

Chip Monolithic Ceramic Capacitors

muRata

Capacitor Arrays

■ Features

1. High density mounting due to mounting space saving
2. Mounting cost saving

■ Applications

General electronic equipment

Part Number	Dimensions (mm)			
	L	W	T	P
GNM1M2	1.37 ±0.15	1.0 ±0.15	0.6 ±0.1	0.64 ±0.05
GNM212	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	1.0 ±0.1
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05
GNM314	3.2 ±0.15	1.6 ±0.15	0.8 ±0.1	0.8 ±0.1
			1.0 ±0.1	

Temperature Compensating Type

Part Number	GNM31	
L x W	3.2x1.6	
TC	C0G (5C)	
Rated Volt.	100 (2A)	50 (1H)
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)		
10pF(100)	0.8(4)	0.8(4)
11pF(110)	0.8(4)	0.8(4)
12pF(120)	0.8(4)	0.8(4)
13pF(130)	0.8(4)	0.8(4)
15pF(150)	0.8(4)	0.8(4)
16pF(160)	0.8(4)	0.8(4)
18pF(180)	0.8(4)	0.8(4)
20pF(200)	0.8(4)	0.8(4)
22pF(220)	0.8(4)	0.8(4)
24pF(240)	0.8(4)	0.8(4)
27pF(270)	0.8(4)	0.8(4)
30pF(300)	0.8(4)	0.8(4)
33pF(330)	0.8(4)	0.8(4)
36pF(360)	0.8(4)	0.8(4)
39pF(390)	0.8(4)	0.8(4)
43pF(430)	0.8(4)	0.8(4)
47pF(470)	0.8(4)	0.8(4)
51pF(510)	0.8(4)	0.8(4)
56pF(560)	0.8(4)	0.8(4)
62pF(620)	0.8(4)	0.8(4)
68pF(680)	0.8(4)	0.8(4)
75pF(750)	0.8(4)	0.8(4)
82pF(820)	0.8(4)	0.8(4)
91pF(910)	0.8(4)	0.8(4)
100pF(101)	0.8(4)	0.8(4)
110pF(111)	0.8(4)	0.8(4)
120pF(121)	0.8(4)	0.8(4)
130pF(131)	0.8(4)	0.8(4)
150pF(151)	0.8(4)	0.8(4)
160pF(161)		0.8(4)
180pF(181)		0.8(4)

Continued on the following page.

Continued from the preceding page.

Part Number	GNM31	
L x W	3.2x1.6	
TC	COG (5C)	
Rated Volt.	100 (2A)	50 (1H)
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)		
200pF(201)		0.8(4)
220pF(221)		0.8(4)
240pF(241)		0.8(4)
270pF(271)		0.8(4)
300pF(301)		0.8(4)
330pF(331)		0.8(4)
360pF(361)		0.8(4)

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four).

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1 Series

Part Number	GNM1M	
L x W	1.37x1.00	
TC	X7R (R7)	
Rated Volt.	16 (1C)	10 (1A)
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)		
22000pF(223)	0.6(2)	
47000pF(473)	0.6(2)	
0.10μF(104)		0.6(2)

The part numbering code is shown in each (). The (2) code in T(mm) means number of elements (two).

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM2 Series

Part Number	GNM21	
L x W	2.0x1.25	
TC	X7R (R7)	
Rated Volt.	50 (1H)	
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)		
1000pF(102)	0.6(4)	
10000pF(103)	0.6(4)	

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four).

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM3 Series

Part Number	GNM31	
L x W	3.2x1.6	
TC	X7R (R7)	
Rated Volt.	100 (2A)	50 (1H)
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)		
220pF(221)	0.8(4)	

Continued on the following page.

Continued from the preceding page.

Part Number	GNM31						
L x W	3.2x1.6						
TC	X7R (R7)				Y5V (F5)		
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)							
270pF(271)	0.8(4)						
330pF(331)	0.8(4)						
390pF(391)	0.8(4)	0.8(4)					
470pF(471)	0.8(4)	0.8(4)					
560pF(561)	0.8(4)	0.8(4)					
680pF(681)	0.8(4)	0.8(4)					
820pF(821)	0.8(4)	0.8(4)					
1000pF(102)	0.8(4)	0.8(4)					
1200pF(122)	0.8(4)	0.8(4)					
1500pF(152)	0.8(4)	0.8(4)					
1800pF(182)	0.8(4)	0.8(4)					
2200pF(222)	0.8(4)	0.8(4)			0.8(4)		
2700pF(272)	0.8(4)	0.8(4)					
3300pF(332)	0.8(4)	0.8(4)			0.8(4)		
3900pF(392)	0.8(4)	0.8(4)					
4700pF(472)	0.8(4)	0.8(4)			0.8(4)		
5600pF(562)		0.8(4)					
6800pF(682)		0.8(4)					
8200pF(822)		0.8(4)					
10000pF(103)		0.8(4)					
12000pF(123)		0.8(4)					
15000pF(153)		0.8(4)					
18000pF(183)			0.8(4)				
22000pF(223)				0.8(4)		0.8(4)	
27000pF(273)				0.8(4)			
33000pF(333)				0.8(4)		0.8(4)	
39000pF(393)				0.8(4)			
47000pF(473)				1.0(4)		0.8(4)	
68000pF(683)				1.0(4)			0.8(4)
0.10μF(104)				1.0(4)			0.8(4)
0.15μF(154)							0.8(4)

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four).

Dimensions are shown in mm and Rated Voltage in Vdc.

Specifications and Test Methods

No.	Item	Specifications			Test Method																				
		Temperature Compensating Type	High Dielectric Type																						
1	Operating Temperature Range	5C : -55°C to +125°C	R7 : -55°C to +125°C F5 : -30°C to +85°C																						
2	Rated Voltage	See the previous pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V^{P-P} or V^{O-P} , whichever is larger, should be maintained within the rated voltage range.																				
3	Appearance	No defects or abnormalities			Visual inspection																				
4	Dimension	Within the specified dimensions			Using calipers																				
5	Dielectric Strength	No defects or abnormalities			No failure should be observed when 300% of the rated voltage (5C) or 250% of the rated voltage (R7, F5) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.																				
6	Insulation Resistance	More than 10,000MΩ or 500Ω • F (Whichever is smaller)			The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.																				
7	Capacitance	Within the specified tolerance			The capacitance/Q/D.F. should be measured at 25°C at the frequency and voltage shown in the table.																				
8	Q/Dissipation Factor (D.F.)	30pF min. : $Q \geq 1000$ 30pF max. : $Q \geq 400+20C$ C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —	Item Char. 5C R7, F5 Frequency 1±0.1MHz 1±0.1kHz Voltage 0.5 to 5Vr.m.s. 1.0±0.2Vr.m.s.																					
9	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient Capacitance Drift	Within the specified tolerance (Table A) Within the specified tolerance (Table A) Within ±0.2% or ±0.05 pF (Whichever is larger)		<p>The capacitance change should be measured after 5 min. at each specified temperature stage.</p> <p>(1) Temperature Compensating Type</p> <p>The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A.</p> <p>The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3.</p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>25±2</td> </tr> <tr> <td>2</td> <td>-55±3 (for 5C/ R7), -30±3 (for F5)</td> </tr> <tr> <td>3</td> <td>25±2</td> </tr> <tr> <td>4</td> <td>125±3 (for 5C/R7), 85±3 (F5)</td> </tr> <tr> <td>5</td> <td>25±2</td> </tr> </tbody> </table> <p>(2) High Dielectric Constant Type</p> <p>The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges.</p>	Step	Temperature (°C)	1	25±2	2	-55±3 (for 5C/ R7), -30±3 (for F5)	3	25±2	4	125±3 (for 5C/R7), 85±3 (F5)	5	25±2								
Step	Temperature (°C)																								
1	25±2																								
2	-55±3 (for 5C/ R7), -30±3 (for F5)																								
3	25±2																								
4	125±3 (for 5C/R7), 85±3 (F5)																								
5	25±2																								
10	Adhesive Strength of Termination	No removal of the terminations or other defect should occur.			<p>Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec.</p> <p>The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.</p> <table border="1"> <thead> <tr> <th>Type</th> <th>a</th> <th>b</th> <th>c</th> <th>d</th> </tr> </thead> <tbody> <tr> <td>GNM1M</td> <td>0.5</td> <td>—</td> <td>0.32</td> <td>0.32</td> </tr> <tr> <td>GNM21</td> <td>0.4</td> <td>1.6</td> <td>0.25</td> <td>0.5</td> </tr> <tr> <td>GNM31</td> <td>0.8</td> <td>2.5</td> <td>0.4</td> <td>0.8</td> </tr> </tbody> </table> <p>(in mm)</p> <p>Fig. 1</p>	Type	a	b	c	d	GNM1M	0.5	—	0.32	0.32	GNM21	0.4	1.6	0.25	0.5	GNM31	0.8	2.5	0.4	0.8
Type	a	b	c	d																					
GNM1M	0.5	—	0.32	0.32																					
GNM21	0.4	1.6	0.25	0.5																					
GNM31	0.8	2.5	0.4	0.8																					

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications			Test Method																		
		Temperature Compensating Type	High Dielectric Type																				
11	Vibration Resistance	Appearance	No defects or abnormalities																				
		Capacitance	Within the specified tolerance																				
		Q/D.F.	30pF min. : $Q \geq 1000$ 30pF max. : $Q \geq 400+20C$																				
			C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —																			
12	Deflection	No cracking or marking defects should occur.			<p>Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).</p> <p>Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5 ± 1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.</p> <p>Fig. 2</p> <p>Fig. 3: Schematic diagram of a test jig for deflection testing. It shows a capacitor mounted on a board with leads extending downwards. A force is applied to the leads through a lever system. Dimensions: 20mm, 50mm, R230, Flexure: ≤ 1, Pressurizing speed: 1.0mm/sec., Pressurize. A capacitance meter is connected across the leads. (in mm)</p> <p>t=0.8mm (GNM21), 1.6mm (GNM31)</p>																		
		<p>•GNM□□4 •GNM□□2</p> <table border="1"> <tr> <td>Type</td> <td>a</td> <td>b</td> <td>c</td> <td>d</td> </tr> <tr> <td>GNM1M</td> <td>2.0 ± 0.05</td> <td>0.5 ± 0.05</td> <td>0.32 ± 0.05</td> <td>0.32 ± 0.05</td> </tr> <tr> <td>GNM21</td> <td>2.0 ± 0.05</td> <td>0.7 ± 0.05</td> <td>0.3 ± 0.05</td> <td>0.2 ± 0.05</td> </tr> <tr> <td>GNM31</td> <td>2.5 ± 0.05</td> <td>0.8 ± 0.05</td> <td>0.4 ± 0.05</td> <td>0.4 ± 0.05</td> </tr> </table> <p>(in mm)</p>				Type	a	b	c	d	GNM1M	2.0 ± 0.05	0.5 ± 0.05	0.32 ± 0.05	0.32 ± 0.05	GNM21	2.0 ± 0.05	0.7 ± 0.05	0.3 ± 0.05	0.2 ± 0.05	GNM31	2.5 ± 0.05	0.8 ± 0.05
Type	a	b	c	d																			
GNM1M	2.0 ± 0.05	0.5 ± 0.05	0.32 ± 0.05	0.32 ± 0.05																			
GNM21	2.0 ± 0.05	0.7 ± 0.05	0.3 ± 0.05	0.2 ± 0.05																			
GNM31	2.5 ± 0.05	0.8 ± 0.05	0.4 ± 0.05	0.4 ± 0.05																			
<p>Fig. 2</p>																							
13	Solderability of Termination	75% of the terminations are to be soldered evenly and continuously.			Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at $230 \pm 5^\circ\text{C}$.																		
14	Resistance to Soldering Heat	The measured and observed characteristics should satisfy the specifications in the following table.			<p>Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at $270 \pm 5^\circ\text{C}$ for 10 ± 0.5 seconds. Let sit at room temperature for 24 ± 2 hours (temperature compensating type) or 48 ± 4 hours (high dielectric constant type), then measure.</p> <ul style="list-style-type: none"> Initial measurement for high dielectric constant type <p>Perform a heat treatment at $150 \pm 5^\circ\text{C}$ for one hour and then let sit for 48 ± 4 hours at room temperature. Perform the initial measurement.</p>																		
		Appearance	No marking defects																				
		Capacitance Change	Within $\pm 2.5\%$ or $\pm 0.25\text{pF}$ (Whichever is larger)	R7 : Within $\pm 7.5\%$ F5 : Within $\pm 20\%$																			
		Q/D.F.	30pF min. : $Q \geq 1000$ 30pF max. : $Q \geq 400+20C$	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —																			
			C : Nominal Capacitance (pF)																				
		I.R.	More than $10,000\text{M}\Omega$ or $500\Omega \cdot \text{F}$ (Whichever is smaller)																				
		Dielectric Strength	No failure																				
15	Temperature Cycle	The measured and observed characteristics should satisfy the specifications in the following table.			<p>Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24 ± 2 hours (temperature compensating type) or 48 ± 4 hours (high dielectric constant type) at room temperature, then measure</p> <table border="1"> <thead> <tr> <th>Step</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> </tr> </thead> <tbody> <tr> <td>Temp. (°C)</td> <td>Min. Operating Temp. ± 3</td> <td>Room Temp.</td> <td>Max. Operating Temp. ± 3</td> <td>Room Temp.</td> </tr> <tr> <td>Time (min.)</td> <td>30±3</td> <td>2 to 3</td> <td>30±3</td> <td>2 to 3</td> </tr> </tbody> </table> <ul style="list-style-type: none"> Initial measurement for high dielectric constant type <p>Perform a heat treatment at $150 \pm 5^\circ\text{C}$ for one hour and then let sit for 48 ± 4 hours at room temperature. Perform the initial measurement.</p>	Step	1	2	3	4	Temp. (°C)	Min. Operating Temp. ± 3	Room Temp.	Max. Operating Temp. ± 3	Room Temp.	Time (min.)	30±3	2 to 3	30±3	2 to 3			
Step	1	2	3	4																			
Temp. (°C)	Min. Operating Temp. ± 3	Room Temp.	Max. Operating Temp. ± 3	Room Temp.																			
Time (min.)	30±3	2 to 3	30±3	2 to 3																			
Appearance	No marking defects																						
Capacitance Change	Within $\pm 2.5\%$ or $\pm 0.25\text{pF}$ (Whichever is larger)	R7 : Within $\pm 7.5\%$ F5 : Within $\pm 20\%$																					
Q/D.F.	30pF min. : $Q \geq 1000$ 30pF max. : $Q \geq 400+20C$	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —																					
	C : Nominal Capacitance (pF)																						
I.R.	More than $10,000\text{M}\Omega$ or $500\Omega \cdot \text{F}$ (Whichever is smaller)																						
Dielectric Strength	No failure																						

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications			Test Method										
		Temperature Compensating Type	High Dielectric Type												
16	Humidity Steady State	The measured and observed characteristics should satisfy the specifications in the following table.			<p>Let the capacitor sit at $40 \pm 2^\circ\text{C}$ and 90 to 95% humidity for 500 ± 12 hours. Remove and let sit for 24 ± 2 hours (temperature compensating type) or 48 ± 4 hours (high dielectric constant type) at room temperature, then measure.</p>										
		Appearance	No marking defects												
		Capacitance Change	Within $\pm 5\%$ or $\pm 0.5\text{pF}$ (Whichever is larger)	R7 : Within $\pm 12.5\%$ F5 : Within $\pm 30\%$											
		Q/D.F.	30pF and over : $Q \geq 350$ 10pF and over, 30pF and below : $Q \geq 275 + 5C/2$	<table border="1"> <thead> <tr> <th>Char.</th> <th>25V min.</th> <th>16V</th> <th>10V</th> </tr> </thead> <tbody> <tr> <td>R7</td> <td>0.025 max.</td> <td>0.035 max.</td> <td>0.035 max.</td> </tr> <tr> <td>F5</td> <td>0.05 max.</td> <td>0.07 max.</td> <td>—</td> </tr> </tbody> </table>		Char.	25V min.	16V	10V	R7	0.025 max.	0.035 max.	0.035 max.	F5	0.05 max.
Char.	25V min.	16V	10V												
R7	0.025 max.	0.035 max.	0.035 max.												
F5	0.05 max.	0.07 max.	—												
10pF and below : $Q \geq 200 + 10C$															
C : Nominal Capacitance (pF)															
I.R.	More than $1,000\text{M}\Omega$ or $50\Omega \cdot \text{F}$ (Whichever is smaller)														
Dielectric Strength	No failure														
17	Humidity Load	The measured and observed characteristics should satisfy the specifications in the following table.			<p>Apply the rated voltage at $40 \pm 2^\circ\text{C}$ and 90 to 95% humidity for 500 ± 12 hours. Remove and let sit for 24 ± 2 hours (temperature compensating type) or 48 ± 4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA.</p>										
		Appearance	No marking defects												
		Capacitance Change	Within $\pm 7.5\%$ or $\pm 0.75\text{pF}$ (Whichever is larger)	R7 : Within $\pm 12.5\%$ F5 : Within $\pm 30\%$											
		Q/D.F.	30pF and over : $Q \geq 200$ 30pF and below : $Q \geq 100 + 10C/3$	<table border="1"> <thead> <tr> <th>Char.</th> <th>25V min.</th> <th>16V</th> <th>10V</th> </tr> </thead> <tbody> <tr> <td>R7</td> <td>0.025 max.</td> <td>0.035 max.</td> <td>0.035 max.</td> </tr> <tr> <td>F5</td> <td>0.05 max.</td> <td>0.07 max.</td> <td>—</td> </tr> </tbody> </table>		Char.	25V min.	16V	10V	R7	0.025 max.	0.035 max.	0.035 max.	F5	0.05 max.
Char.	25V min.	16V	10V												
R7	0.025 max.	0.035 max.	0.035 max.												
F5	0.05 max.	0.07 max.	—												
C : Nominal Capacitance (pF)															
I.R.	More than $500\text{M}\Omega$ or $25\Omega \cdot \text{F}$ (Whichever is smaller)														
Dielectric Strength	No failure														
18	High Temperature Load	The measured and observed characteristics should satisfy the specifications in the following table.			<p>Apply 200% of the rated voltage for 1000 ± 12 hours at the maximum operating temperature $\pm 3^\circ\text{C}$. Let sit for 24 ± 2 hours (temperature compensating type) or 48 ± 4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA.</p> <ul style="list-style-type: none"> Initial measurement for high dielectric constant type. <p>Apply 200% of the rated DC voltage for one hour at the maximum operating temperature $\pm 3^\circ\text{C}$. Remove and let sit for 48 ± 4 hours at room temperature. Perform initial measurement.</p>										
		Appearance	No marking defects												
		Capacitance Change	Within $\pm 3\%$ or $\pm 0.3\text{pF}$ (Whichever is larger)	R7 : Within $\pm 12.5\%$ F5 : Within $\pm 30\%$											
		Q/D.F.	30pF and over : $Q \geq 350$ 10pF and over, 30pF and below : $Q \geq 275 + 5C/2$	<table border="1"> <thead> <tr> <th>Char.</th> <th>25V min.</th> <th>16V</th> <th>10V</th> </tr> </thead> <tbody> <tr> <td>R7</td> <td>0.025 max.</td> <td>0.035 max.</td> <td>0.035 max.</td> </tr> <tr> <td>F5</td> <td>0.05 max.</td> <td>0.07 max.</td> <td>—</td> </tr> </tbody> </table>		Char.	25V min.	16V	10V	R7	0.025 max.	0.035 max.	0.035 max.	F5	0.05 max.
Char.	25V min.	16V	10V												
R7	0.025 max.	0.035 max.	0.035 max.												
F5	0.05 max.	0.07 max.	—												
10pF and below : $Q \geq 200 + 10C$															
C : Nominal Capacitance (pF)															
I.R.	More than $1,000\text{M}\Omega$ or $50\Omega \cdot \text{F}$ (Whichever is smaller)														
Dielectric Strength	No failure														

Table A

Char.	Nominal Values (ppm/°C) Note 1	Capacitance Change from 25°C (%)					
		-55		-30		-10	
		Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C.