

LMX2522, LMX2532

LMX2522/LMX2532 PLLatinum Frequency Synthesizer System with Integrated VCOs

Literature Number: SNWS009A

LMX2522/LMX2532

PLLatinum™ Frequency Synthesizer System with Integrated VCOS

General Description

LMX2522 and LMX2532 are highly integrated, high performance, low power frequency synthesizer systems optimized for Korean PCS (K-PCS) with GPS and Korean Cellular (K-Cellular) with GPS, CDMA (1xRTT, IS-95) mobile handsets. Using a proprietary digital phase locked loop technique, LMX2522 and LMX2532 generate very stable, low noise local oscillator signals for up and down conversion in wireless communications devices.

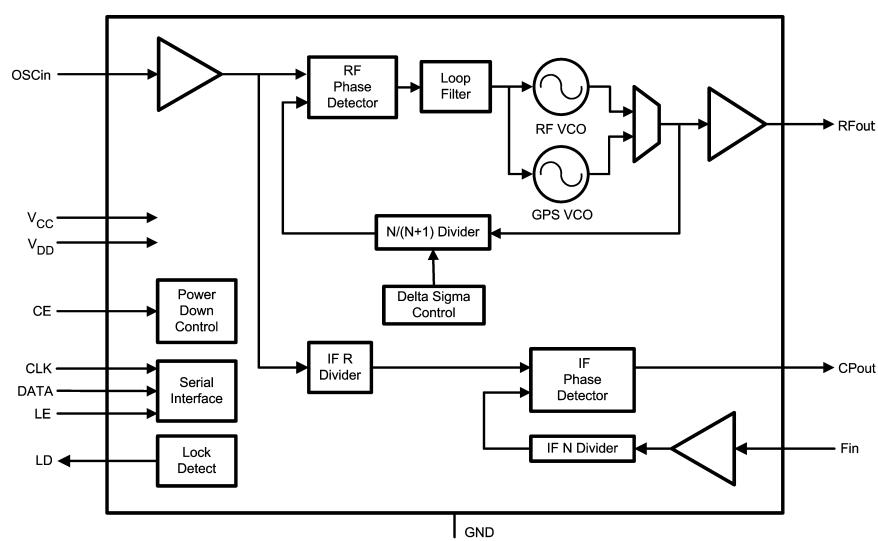
LMX2522 and LMX2532 include a RF voltage controlled oscillator (VCO), a GPS VCO, a loop filter, and a fractional-N RF PLL based on a delta sigma modulator. In concert these blocks form a closed loop RF and GPS synthesizer system. LMX2522 supports the Korean PCS band with GPS and LMX2532 supports the Korean Cellular band with GPS.

LMX2522 and LMX2532 include an Integer-N IF PLL also. For more flexible loop filter designs, the IF PLL includes a 4-level programmable charge pump. Together with an external VCO and loop filter, LMX2522 and LMX2532 make a complete closed loop IF synthesizer system.

Serial data is transferred to the device via a three-wire MICROWIRE interface (DATA, LE, CLK).

Operating supply voltage ranges from 2.7 V to 3.3 V. LMX2502 and LMX2512 feature low current consumption: 17 mA at 2.8 V.

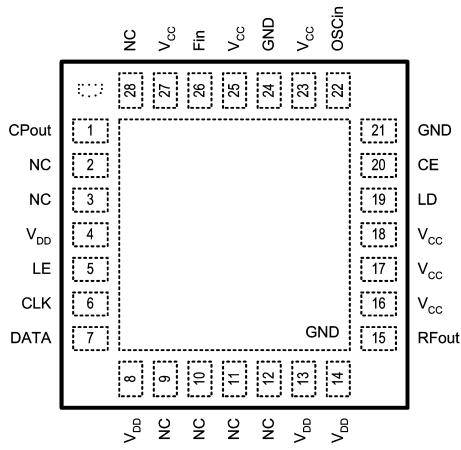
LMX2522 and LMX2532 are available in a 28-pin leadless leadframe package (LLP).


Features

- Small Size
Small 5.0 mm x 5.0 mm x 0.75 mm 28-Pin LLP Package
- RF/GPS Synthesizer System
Integrated RF VCO
Integrated GPS VCO
Integrated Loop Filter
Low Spurious, Low Phase Noise Fractional-N RF PLL
Based on 11-bit Delta Sigma Modulator
10 kHz Frequency Resolution
- IF Synthesizer System
Integer-N IF PLL
Programmable Charge Pump Current Levels
Programmable Frequencies
- Supports Various Reference Oscillator Frequencies
19.20/19.68 MHz
- Fast Lock Time: 500 µs
- Low Current Consumption
17 mA at 2.8 V
- 2.7 V to 3.3 V Operation
- Digital Filtered Lock Detect Output
- Hardware and Software Power Down Control

Applications

- Korean PCS CDMA Systems with GPS
- Korean Cellular CDMA Systems with GPS


Functional Block Diagram

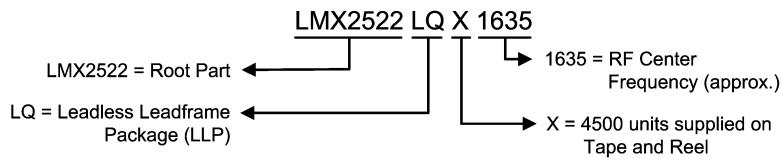
PLLatinum is a trademark of National Semiconductor Corporation.

Connection Diagram

28-Pin LLP (LQ) Package

20067202

NOTE: Analog ground connected through exposed die attached pad.


Pin Descriptions

Pin Number	Name	I/O	Description
1	CPout	O	IF PLL charge pump output
2	NC	—	Do not connect to any node on printed circuit board.
3	NC	—	Do not connect to any node on printed circuit board.
4	V _{DD}	—	Supply voltage for IF analog circuitry
5	LE	I	MICROWIRE Latch Enable
6	CLK	I	MICROWIRE Clock
7	DATA	I	MICROWIRE Data
8	V _{DD}	—	Supply voltage for VCOs
9	NC	—	Do not connect to any node on printed circuit board.
10	NC	—	Do not connect to any node on printed circuit board.
11	NC	—	Do not connect to any node on printed circuit board.
12	NC	—	Do not connect to any node on printed circuit board.
13	V _{DD}	—	Supply voltage for VCOs
14	V _{DD}	—	Supply voltage for VCOs output buffer
15	RFout	O	Buffered VCO output
16	V _{CC}	—	Supply voltage for RF prescaler
17	V _{CC}	—	Supply voltage for charge pump
18	V _{CC}	—	Supply voltage for RF digital circuitry
19	LD	O	Lock Detect
20	CE	I	Chip Enable control pin
21	GND	—	Ground for digital circuitry
22	OSCin	I	Reference frequency input
23	V _{CC}	—	Supply voltage for reference input buffer
24	GND	—	Ground for digital circuitry
25	V _{CC}	—	Supply voltage for IF digital circuitry
26	Fin	I	IF buffer/prescaler input
27	V _{CC}	—	Supply voltage for IF buffer/prescaler
28	NC	—	Do not connect to any node on printed circuit board.

Ordering Information

Part Number	RF Min. (MHz)	RF Max. (MHz)	RF Center (MHz)	IF (MHz)	GPS (MHz)	Package Marking	Supplied As
LMX2522LQX1635	1619.62	1649.62	~1635	440.76	1355.04	25221635	4500 units on tape and reel
LMX2522LQ1635	1619.62	1649.62	~1635	440.76	1355.04	25221635	1000 units on tape and reel
LMX2532LQX0967	954.42	979.35	~967	170.76	1490.04	25320967	4500 units on tape and reel
LMX2532LQ0967	954.42	979.35	~967	170.76	1490.04	25320967	1000 units on tape and reel
LMX2532LQX1065	1052.64	1077.57	~1065	367.20	1391.82	25321065	4500 units on tape and reel
LMX2532LQ1065	1052.64	1077.57	~1065	367.20	1391.82	25321065	1000 units on tape and reel

Part Number Description

20067203

Absolute Maximum Ratings (Notes 1,

2, 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Parameter	Symbol	Ratings	Units
Supply Voltage	V_{CC} , V_{DD}	-0.3 to 3.6	V
Voltage on any pin to GND	V_I	-0.3 to $V_{DD}+0.3$	V
		-0.3 to $V_{CC}+0.3$	V
Storage Temperature Range	T_{STG}	-65 to 150	°C

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Units
Ambient Temperature	T_A	-30	25	85	°C
Supply Voltage (to GND)	V_{CC} , V_{DD}	2.7		3.3	V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, refer to the Electrical Characteristics section. The guaranteed specifications apply only for the conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating < 2 kV and is ESD sensitive. Handling and assembly of this device should be done at ESD protected work stations.

Note 3: GND = 0 V.

Electrical Characteristics ($V_{CC} = V_{DD} = 2.8$ V, $T_A = 25$ °C; unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units	
I_{CC} PARAMETERS							
$I_{CC} + I_{DD}$	Total Supply Current	OB_CRL [1:0] = 00		17	19	mA	
$(I_{CC} + I_{DD})_{RF}$	RF PLL Total Supply Current	OB_CRL [1:0] = 00		16	18	mA	
I_{PD}	Power Down Current (Note 4)	CE = Low or RF_EN = 0 IF_EN = 0			20	μA	
REFERENCE OSCILLATOR							
f_{OSCin}	Reference Oscillator Input Frequency (Note 5)	19.20 MHz and 19.68 MHz are supported	19.20		19.68	MHz	
V_{OSCin}	Reference Oscillator Input sensitivity			0.2	V_{CC}	V_{P-P}	
RF VCO							
f_{RFout}	Frequency Range (Note 6)	LMX2522LQ1635	RF VCO	1619.62		1649.62	MHz
		LMX2532LQ0967		954.42		979.35	MHz
		LMX2532LQ1065		1052.64		1077.57	MHz
P_{RFout}	RF Output Power	OB_CRL [1:0] = 11		-2	1	4	dBm
		OB_CRL [1:0] = 10		-5	-2	1	dBm
		OB_CRL [1:0] = 01		-7	-4	-1	dBm
		OB_CRL [1:0] = 00		-9	-6	-3	dBm
	Lock Time (Note 7)	LMX2522LQ1635	30 MHz Band for RF PLL		500	800	μs
		LMX2532LQ0967	25 MHz Band for RF PLL		500	800	μs
		LMX2532LQ1065	25 MHz Band for RF PLL		500	800	μs
	Reference Spurs					-75	dBc
	RMS Phase Error	RF PLL in all band			1.3		degrees
$L(f)$	Phase Noise	LMX2522LQ1635	@100 kHz offset		-113	-112	dBc/Hz
			@1.25 MHz offset		-138	-136	dBc/Hz
		LMX2532LQ0967	@100 kHz offset		-117	-115	dBc/Hz
			@900 kHz offset		-139	-138	dBc/Hz
		LMX2532LQ1065	@100 kHz offset		-117	-115	dBc/Hz
			@900 kHz offset		-139	-138	dBc/Hz
	2nd Harmonic Suppression					-25	dBc
	3rd Harmonic Suppression					-20	dBc

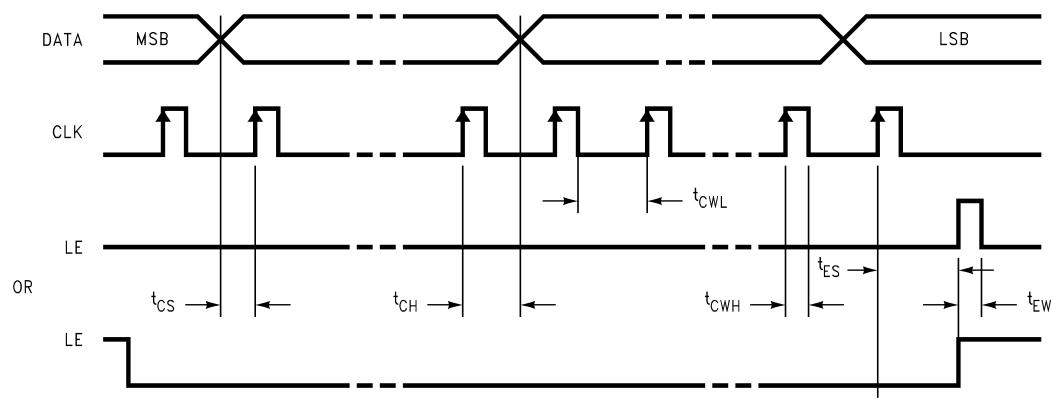
Electrical Characteristics ($V_{CC} = V_{DD} = 2.8$ V, $T_A = 25$ °C; unless otherwise noted.) (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
GPS VCO						
f_{RFout}	Operating Frequency	LMX2522LQ1635	GPS VCO	1355.04		MHz
		LMX2532LQ0967		1490.04		MHz
		LMX2532LQ1065		1391.82		MHz
p_{RFout}	Output Power	OB_CRL [1:0] = 11	-2	1	4	dBm
		OB_CRL [1:0] = 10	-5	-2	1	dBm
		OB_CRL [1:0] = 01	-7	-4	-1	dBm
		OB_CRL [1:0] = 00	-9	-6	-3	dBm
		Lock Time (Note 7)	From RF to GPS PLL	600	800	μs
	Reference Spurs				-75	dBc
	RMS Phase Error	RF PLL in all band		1.3		degrees
$L(f)$	Phase Noise	@100 kHz offset		-113	-112	dBc/Hz
		@1.25 MHz offset		-138	-136	dBc/Hz
	2nd Harmonic Suppression				-25	dBc
	3rd Harmonic Suppression				-20	dBc
IF PLL						
f_{Fin}	Operating Frequency (Note 8)	LMX2522LQ1635	IF_FREQ [1:0] = 10, Default Value		440.76	MHz
		LMX2532LQ0967	IF_FREQ [1:0] = 00, Default Value		170.76	MHz
		LMX2532LQ1065	IF_FREQ [1:0] = 01, Default Value		367.20	MHz
p_{Fin}	IF Input Sensitivity		-10		0	dBm
$f_{\phi IF}$	Phase Detector Frequency			120		kHz
I_{CPout}	Charge Pump Current	IF_CUR [1:0] = 00		100		μA
		IF_CUR [1:0] = 01		200		μA
		IF_CUR [1:0] = 10		300		μA
		IF_CUR [1:0] = 11		800		μA
DIGITAL INTERFACE (DATA, CLK, LE, LD, CE)						
V_{IH}	High-Level Input Voltage		0.8 V_{DD}		V_{DD}	V
			0.8 V_{CC}		V_{CC}	V
V_{IL}	Low-Level Input Voltage		0		0.2 V_{DD}	V
			0		0.2 V_{CC}	V
I_{IH}	High-Level Input Current		-10		10	μA
I_{IL}	Low-Level Input Current		-10		10	μA
	Input Capacitance			3		pF
V_{OH}	High-Level Output Voltage		0.9 V_{DD}			V
			0.9 V_{CC}			V
V_{OL}	Low-Level Output Voltage				0.1 V_{DD}	V
					0.1 V_{CC}	V
	Output Capacitance				5	pF

Electrical Characteristics ($V_{CC} = V_{DD} = 2.8$ V, $T_A = 25$ °C; unless otherwise noted.) (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
MICROWIRE INTERFACE TIMING						
t_{CS}	Data to Clock Set Up Time		50			ns
t_{CH}	Data to Clock Hold Time		10			ns
t_{CWH}	Clock Pulse Width High		50			ns
t_{CWL}	Clock Pulse Width Low		50			ns
t_{ES}	Clock to Latch Enable Set Up Time		50			ns
t_{EW}	Latch Enable Pulse Width		50			ns

Note 4: In power down mode, set DATA, CLK and LE pins to 0 V (GND).


Note 5: The reference frequency must also be programmed using the OSC_FREQ control bit. For other reference frequencies, please contact National Semiconductor.

Note 6: For other frequency ranges, please contact National Semiconductor.

Note 7: Lock time is defined as the time difference between the beginning of the frequency transition and the point at which the frequency remains within +/- 1 kHz of the final frequency.

Note 8: Frequencies other than the default value can be programmed using Words R4 and R5. See Programming Description for details.

Serial Data Input Timing

20067204

Functional Description

GENERAL DESCRIPTION

LMX2522/32 is a highly integrated frequency synthesizer system that generates LO signals for PCS, Cellular CDMA and GPS systems. These devices include all of the functional blocks of a PLL, RF VCO, prescaler, RF phase detector, and loop filter. The need for external components is limited to a few passive elements for matching the output impedance and bypass elements for power line stabilization. In addition to the RF circuitry, the IC also includes IF frequency dividers, and an IF phase detector to complete the IF synthesis with an external VCO and loop filter. *Table 4* summarizes the counter values to generate the default IF frequencies.

Using a low spurious fractional-N synthesizer based on a delta sigma modulator, the circuit can support 10 kHz channel spacing for PCS, Cellular CDMA and GPS systems.

The fractional-N synthesizer enables faster lock time, which reduces power consumption and system set-up time. Additionally, the loop filter occupies a smaller area as opposed to the integer-N architecture. This allows the loop filter to be embedded into the circuit, minimizing the external noise coupling and total form factor. The delta sigma architecture delivers very low spurious, which can be a significant problem for other PLL solutions.

The circuit also supports commonly used reference frequencies of 19.20 MHz and 19.68 MHz.

FREQUENCY GENERATION

RF-PLL Section

The divide ratio can be calculated using the following equation:

LMX2522 – PCS CDMA:

$$f_{VCO} = \{8 \times RF_B + RF_A + (RF_FN / f_{osc}) \times 10^4\} \times f_{osc}$$

where (RF_A < RF_B)

LMX2532 – Cellular CDMA:

$$f_{VCO} = \{6 \times RF_B + RF_A + (RF_FN / f_{osc}) \times 10^4\} \times f_{osc}$$

where (RF_A < RF_B)

where

f_{VCO} : Output frequency of voltage controlled oscillator (VCO)

RF_B : Preset divide ratio of binary 4-bit programmable counter ($2 \leq RF_B \leq 15$)

RF_A : Preset divide ratio of binary 3-bit swallow counter ($0 \leq RF_A \leq 7$ for LMX2522 or $0 \leq RF_A \leq 5$ for LMX2532)

RF_FN : Preset numerator of binary 11-bit modulus counter ($0 \leq RF_FN < 1920$ for $f_{osc} = 19.20$ MHz or $0 \leq RF_FN < 1968$ for $f_{osc} = 19.68$ MHz)

f_{osc} : Reference oscillator frequency

GPS-PLL SECTION

The divide ratio can be calculated using the following equation:

LMX2522 – PCS CDMA:

$$f_{VCO} = \{6 \times RF_B + RF_A + (RF_FN / f_{osc}) \times 10^4\} \times f_{osc}$$

where (RF_A < RF_B)

LMX2532 – Cellular CDMA:

$$f_{VCO} = \{8 \times RF_B + RF_A + (RF_FN / f_{osc}) \times 10^4\} \times f_{osc}$$

where (RF_A < RF_B)

where

f_{VCO} : Output frequency of voltage controlled oscillator (VCO)

RF_B : Preset divide ratio of binary 4-bit programmable counter ($2 \leq RF_B \leq 15$)

RF_A : Preset divide ratio of binary 3-bit swallow counter ($0 \leq RF_A \leq 5$ for LMX2522 or $0 \leq RF_A \leq 7$ for LMX2532)

RF_FN : Preset numerator of binary 11-bit modulus counter ($0 \leq RF_FN < 1920$ for $f_{osc} = 19.20$ MHz or $0 \leq RF_FN < 1968$ for $f_{osc} = 19.68$ MHz)

f_{osc} : Reference oscillator frequency

PCS CDMA applications using the LMX2522, if the GPS frequency is 1355.04 MHz, *Table 1* provides the proper register settings:

TABLE 1. Settings for GPS (1355.04 MHz) in LMX2522 PCS CDMA application

Reference Frequency	RF_B	RF_A	RF_FN
19.20 MHz	11	4	1104
19.68 MHz	11	2	1680

Cellular CDMA applications using the LMX2532, in which the GPS frequency is 1490.04 MHz, then *Table 2* provides the proper register settings:

TABLE 2. Settings for GPS (1490.04 MHz) in LMX2532 Cellular CDMA application

Reference Frequency	RF_B	RF_A	RF_FN
19.20 MHz	9	5	1164
19.68 MHz	9	3	1404

Cellular CDMA applications using the LMX2532, in which the GPS frequency is 1391.82 MHz, then *Table 3* provides the proper register settings:

TABLE 3. Settings for GPS (1391.82 MHz) in LMX2532 Cellular CDMA application

Reference Frequency	RF_B	RF_A	RF_FN
19.20 MHz	9	0	942
19.68 MHz	8	6	1422

IF-PLL SECTION

$f_{VCO} = \{16 \times IF_B + IF_A\} \times f_{osc} / IF_R$ where ($IF_A < IF_B$)

where

f_{VCO} : Output frequency of the voltage controlled oscillator (VCO)

IF_B : Preset divide ratio of the binary 9-bit programmable counter ($1 \leq IF_B \leq 511$)

IF_A : Preset divide ratio of the binary 4-bit swallow counter ($0 \leq IF_A \leq 15$)

f_{osc} : Reference oscillator frequency

IF_R : Preset divide ratio of the binary 9-bit programmable reference counter ($2 \leq IF_R \leq 511$)

From the above equation, the LMX2522/32 generates the fixed IF frequencies as summarized in *Table 4*.

Functional Description (Continued)

TABLE 4. IF Frequencies

Device Type	f_{VCO} (MHz)	IF_B	IF_A	f_{osc}/IF_R (kHz)
LMX2522LQ1635	440.76	229	9	120
LMX2532LQ0967	170.67	88	15	120
LMX2532LQ1065	367.20	191	4	120

VCO FREQUENCY TUNING

The center frequency of the RF VCO is mainly determined by the resonant frequency of the tank circuit. This tank circuit is implemented on-chip and requires no external inductor. The LMX2522/32 actively tunes the tank circuit to the required frequency with the built-in tracking algorithm.

BANDWIDTH CONTROL AND FREQUENCY LOCK

During the frequency acquisition period, the loop bandwidth is significantly extended to achieve frequency lock. Once frequency lock occurs, the PLL will return to a steady state condition with the loop bandwidth set to its nominal value. The transition between acquisition and lock modes occurs seamlessly and extremely fast, thereby, meeting the stringent requirements associated with lock time and phase noise. Several controls (BW_DUR, BW_CRL and BW_EN) are used to optimize the lock time performance.

SPURIOUS REDUCTION

To improve the spurious performance of the device one of two types of spurious reduction schemes can be selected:

- A continuous optimization scheme, which tracks the environmental and voltage variations, giving the best spurious performance over changing conditions
- A one time optimization scheme, which sets the internal compensation values only when the PLL goes into a locked state.

The spurious reduction can also be disabled, but it is recommended that the continuous optimization mode be used for normal operation.

POWER DOWN MODE

The LMX2522 and LMX2532 include a power down mode to reduce the power consumption. The LMX2522/32 enters into the power down mode either by taking the CE pin LOW or by setting the power down bits in Register R1. Table 5 summarizes the power down function. If CE is set LOW, the circuit is powered down regardless of the register values. When CE is HIGH, the IF and RF circuitry are individually powered down by setting the register bits.

TABLE 5. Power Down Configuration

CE Pin	RF_EN	IF_EN	RF Circuitry	IF Circuitry
0	X	X	OFF	OFF
1	0	0	OFF	OFF
1	0	1	OFF	ON
1	1	0	ON	OFF
1	1	1	ON	ON

X = Don't care.

LOCK DETECT

The LD output can be used to indicate the lock status of the RF PLL. Bit 21 in Register R0 determines the signal that appears on the LD pin. When the RF PLL is not locked, the LD pin remains LOW. After obtaining phase lock, the LD pin will have a logical HIGH level. The output can also be programmed to be ground at all times.

TABLE 6. Lock Detect Modes

LD Bit	Mode
0	Disable (GND)
1	Enable

TABLE 7. Lock Detect Logic Table

RF PLL Section	LD Output
Locked	HIGH
Not Locked	LOW

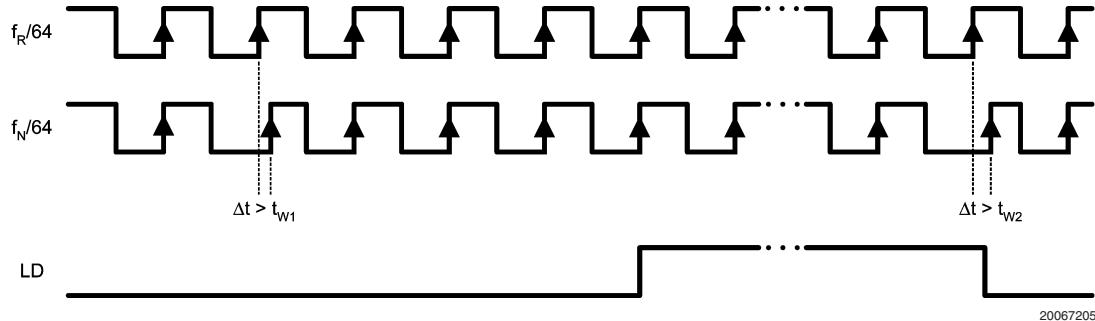
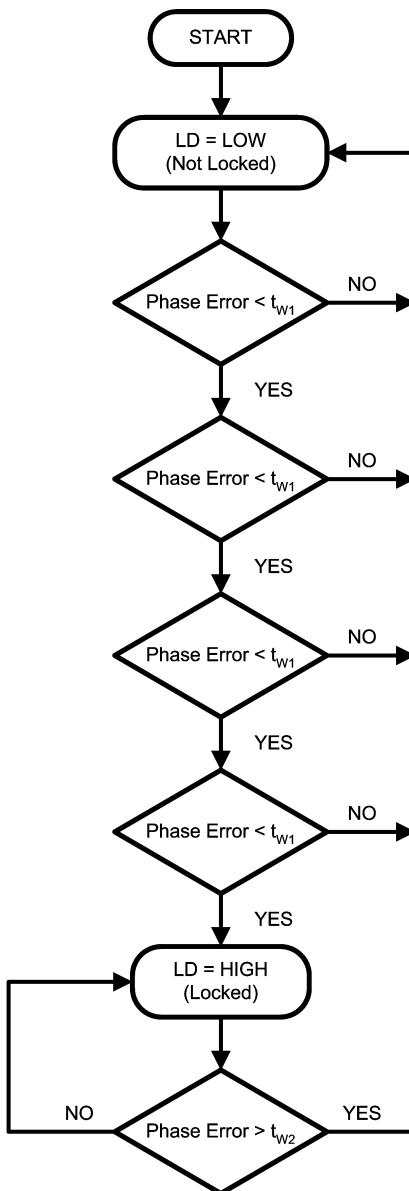


FIGURE 1. Lock Detect Timing Diagram Waveform

Note 9: LD output becomes low when the phase error is larger than t_{W2} .


Note 10: LD output becomes high when the phase error is less than t_{W1} for four or more consecutive cycles.

Note 11: Phase Error is measured on leading edge. Only errors greater than t_{W1} and t_{W2} are labeled.

Note 12: t_{W1} and t_{W2} are equal to 10 ns.

Note 13: The lock detect comparison occurs with every 64th cycle of f_R and f_N .

Functional Description (Continued)

20067206

FIGURE 2. Lock Detect Flow Diagram

MICROWIRE INTERFACE

The programmable register set is accessed via the MICROWIRE serial interface. The interface comprises three signal pins: CLK, DATA, and LE. Serial data (DATA) is clocked into the 24-bit shift register on the rising edge of the

clock (CLK). The last bits decode the internal control register address. When the Latch Enable (LE) transitions from LOW to HIGH, data stored in the shift registers is loaded into the corresponding control register.

Programming Description

CONTROL REGISTER CONTENT MAP

The serial interface has a 24-bit shift register to store the incoming data bits temporarily. The incoming Data is loaded into the shift register from MSB to LSB. The Data is shifted at the rising edge of the Clock signal. When the Latch Enable signal transitions from LOW to HIGH, the data stored in the shift register is transferred to the proper register depending on the address bit settings. The selection of the particular register is determined by the control bits indicated in boldface text.

At initial start-up, the MICROWIRE loading requires 4 default words (registers R3, loaded first, to R0, loaded last). After the device has been initially programmed, the RF VCO frequency can be changed using a single register (R0). If an IF frequency other than the default value for the device is desired the SPI_DEF bit should be set to 0, the desired values for IF_A, IF_B, and IF_R entered and words R6 to R0 should be sent.

The control register content map describes how the bits within each control register are allocated to the specific control functions.

Complete Register Map

Register	MSB	SHIFT REGISTER BIT LOCATION																						LSB
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R0 (Default)	SPI_DEF	RF_SEL	RF_LD	SPUR_CRL	RF_B [3:0]					RF_A [2:0]			RF_FN [10:0]					0 0					0 0	
R1 (Default)	IF_FREQ [1:0]		OSC_FREQ	1	0	0	0	0	0	0	0	0	SPUR_RDT [1:0]	0	0	1	0	1	OB_CRL [1:0]	RF_EN	IF_EN	0	1	
R2 (Default)	IF_CUR[1:0]		0	0	1	0	0	1	1	1	0	1	1	0	1	0	1	0	0	0	1	0	1	0
R3 (Default)	BW_DUR [1:0]		BW_CRL [1:0]		BW_EN	1	0	1	1	1	1	0	1	0	0	0	1	1	0	VCO_CUR [1:0]	0 1 1		0 1 1	
R4	0	0	0	1	0	0	0	IF_A [3:0]			IF_B [8:0]					0 1 1 1					0 1 1 1		0 1 1 1	
R5	0	0	1	1	0	0	0	0	1	0	IF_R [8:0]					0 1 1 1					0 1 1 1		0 1 1 1	
R6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

NOTE: **Bold** numbers represent the address bits.

Programming Description (Continued)

R0 REGISTER

The R0 register address bits (R0 [1:0]) are “00”.

The SPI_DEF bit selects between using the default IF counter values and user programmable values. The use of the default counter values requires that only words R0 to R3 (registers R3, loaded first, to R0, loaded last) be sent after initial power up.

The RF_LD bit activates the lock detect output of the LD pin (pin 19). The lock detect mode shows the lock status of the RF PLL. The waveform of the lock detect mode is shown in *Figure 1*, in the **Functional Description** section on **LOCK DETECT**.

The SPUR_CRL bit is set to 1 only in the GPS mode with the LMX2532LQ1065 when a 19.68 MHz reference oscillator is used.

The RF N counter consists of the 4-bit programmable counter (RF_B counter), the 3-bit swallow counter (RF_A counter) and the 11-bit delta sigma modulator (RF_FN counter). The equations for calculating the counter values are presented below.

R0 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																					LSB	
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data Field																								Address Field
R0 (Default)	SPI_DEF	RF_SEL	RF_LD	SPUR_CRL	RF_B [3:0]	RF_A [2:0]										RF_FN [10:0]			0	0				

Name	Functions
SPI_DEF	Default Register Selection 0 = OFF (Use values set in R0 to R6) 1 = ON (Use default values set in R0 to R3)
RF_SEL	RF Select Configuration See <i>Table 8. RF_SEL Configuration</i> below
RF_LD	RF Lock Detect 0 = Hard zero (GND) 1 = Lock detect
SPUR_CRL	Spur Control 1 = LMX2532LQ1065 in GPS mode with 19.68 MHz reference oscillator only 0 = All other options
RF_B [3:0]	RF_B Counter 4-bit programmable counter $2 \leq RF_B \leq 15$
RF_A [2:0]	RF_A Counter 3-bit swallow counter $0 \leq RF_A \leq 7$ for LMX2522 $0 \leq RF_A \leq 5$ for LMX2532
RF_FN [10:0]	RF Fractional Numerator Counter 11-bit programmable counter $0 \leq RF_FN < 1920$ for $f_{osc} = 19.20$ MHz $0 \leq RF_FN < 1968$ for $f_{osc} = 19.68$ MHz

TABLE 8. RF_SEL Configuration

Device Type	RF_SEL = 0	RF_SEL = 1
LMX2522	GPS	K-PCS
LMX2532	K-Cellular	GPS

Programming Description (Continued)

RF N Counter Setting:

Counter Name	Symbol	Function
Modulus Counter	RF_FN	RF N Divider $N = \text{Prescaler} \times RF_B + RF_A + (RF_FN / f_{osc}) \times 10^4$
Programmable Counter	RF_B	
Swallow Counter	RF_A	

Pulse Swallow Function:

$$f = \{\text{Prescaler} \times RF_B + RF_A + (RF_FN / f_{osc}) \times 10^4\} \times f_{osc} \text{ where } (RF_A < RF_B)$$

where

f_{VCO} : Output frequency of voltage controlled oscillator (VCO)

Prescaler Values:

Device Type	RF Prescaler	GPS Prescaler
LMX2522	8	6
LMX2532	6	8

RF_B: Preset divide ratio of binary 4-bit programmable counter ($2 \leq RF_B \leq 15$)

RF_A: Preset divide ratio of binary 3-bit swallow counter ($0 \leq RF_A \leq 7$ for prescaler of 8 or $0 \leq RF_A \leq 5$ for prescaler of 6)

RF_FN: Preset numerator of binary 11-bit modulus counter ($0 \leq RF_FN < 1920$ for $f_{osc} = 19.20$ MHz; $0 \leq RF_FN < 1968$ for $f_{osc} = 19.68$ MHz).

f_{osc} : Reference oscillator frequency

NOTE: For the use of reference frequencies other than those specified, please contact National Semiconductor.

Programming Description (Continued)

R1 REGISTER

The R1 register address bits (R1 [1:0]) are "01".

The IF_FREQ bits selects the default IF frequency applicable to the specific CDMA system. For the LMX2522 the default IF frequency is 440.76 MHz, and for the LMX2532 the default IF frequencies are 367.20 MHz and 170.76 MHz, depending on variant.

Reference Frequency Selection bit (OSC_FREQ) selects either 19.20 MHz or 19.68 MHz for the reference oscillator frequency.

The internal spurious reduction scheme is controlled by the SPUR_RDT [1:0] bits. There are two different spur reduction schemes: a continuous tracking mode and a single optimization mode. The continuous tracking mode will adjust for variations in voltage and temperature. The single optimization mode fixes the internal compensation parameters only when the PLL goes into the locked state. The spur reduction can also be disabled, but it is recommended that the continuous mode be used for normal operation.

The OB_CRL [1:0] bits determine the power level of the RF output buffer. The power level is set according to the system requirement.

The two bits, RF_EN and IF_EN, logically select the active state of the RF/GPS synthesizer system and the IF PLL, respectively. The entire IC can be placed in a power down state by using the CE control pin (pin 20).

R1 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																					LSB	
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field			
R1 (Default)	IF_FREQ [1:0]	OSC_FREQ	1	0	0	0	0	0	0	0	0	0	SPUR_RDT [1:0]	0	0	1	0	1	OB_CRL [1:0]	RF_EN	IF_EN	0	1	

Name	Functions
IF_FREQ [1:0]	IF Frequency Selection 00 = 170.76 MHz (LMX2532LQ0967) 01 = 367.20 MHz (LMX2532LQ1065) 10 = 440.76 MHz (LMX2522LQ1635)
OSC_FREQ	Reference Frequency Selection 0 = 19.20 MHz 1 = 19.68 MHz
SPUR_RDT [1:0]	Spur Reduction Scheme 00 = No spur reduction 01 = Not Used 10 = Continuous tracking of variation (Recommended) 11 = One time optimization
OB_CRL [1:0]	RF Output Power Control 00 = Minimum Output Power 01 = 10 = 11 = Maximum Output Power
RF_EN	RF Enable 0 = RF Off 1 = RF On
IF_EN	IF Enable 0 = IF Off 1 = IF On

Programming Description (Continued)

R2 REGISTER

The R2 Register address bits (R2 [1:0]) are “10”.

The IF_CUR [1:0] bits program the IF charge pump current. Considering the external IF VCO and loop filter, the user can select the amount of IF charge pump current to be 100µA, 200µA, 300µA or 800µA.

R2 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																					LSB	
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Data Field																				Address Field			
R2 (Default)	IF_CUR[1:0]	0	0	1	0	0	1	1	1	0	1	1	0	1	0	1	0	0	0	1	0	1	0	

Name	Functions
IF_CUR [1:0]	IF Charge Pump Current 00 = 100 µA 01 = 200 µA 10 = 300 µA 11 = 800 µA

Programming Description (Continued)

R3 REGISTER

The R3 register address bits (R3 [2:0]) are “011”.

Register R3 contains the controls for the phase lock bandwidth controls (BW_DUR, BW_CRL and BW_EN). The duration of the digital controller portion of the bandwidth control is set by BW_DUR [1:0]. The minimum time set with 00 and increasing durations to the maximum value set with 11. BW_CRL [1:0] sets the phase offset criterion for the bandwidth controller. Once the phase offset between the reference clock and the divided VCO signal are within the set criterion, the bandwidth control stops. The maximum phase offset is set with 00 and decreases to the minimum value set with 11. BW_EN enables the bandwidth control in the locking state.

The VCO dynamic current is also controlled in register R3 with VCO_CUR [1:0]. The minimum value corresponds to 00 and increases to a maximum value set at 11.

R3 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																							LSB
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Data Field																									Address Field
R3 (Default)	BW_DUR [1:0]	BW_CRL [1:0]	BW_EN	1	0	1	1	1	1	1	0	1	0	0	0	0	1	1	0	VCO_CUR [1:0]	0	1	1	0	

Name	Functions
BW_DUR [1:0]	Bandwidth Duration 00 = Minimum value (Recommended) 01 = 10 = 11 = Maximum value
BW_CRL [1:0]	Bandwidth Control 00 = Maximum phase offset (Recommended) 01 = 10 = 11 = Minimum phase offset
BW_EN	Bandwidth Enable 0 = Disable 1 = Enable (Recommended)
VCO_CUR [1:0]	VCO Dynamic Current 00 = Minimum value 01 = 10 = 11 = Maximum value (Recommended)

Programming Description (Continued)

R4 REGISTER

The R4 register address bits (R3 [3:0]) are "0111".

Register R4 is used to set the IF N counters if the default value is not desired. This register is only active if the SPI_DEF bit in register R0 is 0.

The IF N counter consists of the 9-bit programmable counter (IF_B counter) and the 4-bit swallow counter (IF_A counter). The equations for calculating the counter values are presented below.

R4 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																								LSB						
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0								
	Data Field																								Address Field							
R4	0	0	0	1	0	0	0	0	IF_A [3:0]										IF_B [8:0]										0	1	1	1

Name	Functions
IF_A [3:0]	IF A Counter 4-bit swallow counter $0 \leq \text{IF_A} \leq 15$
IF_B [8:0]	IF B Counter 9-bit programmable counter $1 \leq \text{IF_B} \leq 511$

IF Frequency Setting:

$$f_{\text{VCO}} = \{16 \times \text{IF_B} + \text{IF_A}\} \times f_{\text{OSC}} / R \text{ where } (\text{IF_A} < \text{IF_B})$$

where

f_{VCO} : Output frequency of IF voltage controlled oscillator (IF VCO)

IF_B: Preset divide ratio of binary 9-bit programmable counter ($1 \leq \text{IF_B} \leq 511$)

IF_A: Preset divide ratio of binary 4-bit swallow counter ($0 \leq \text{IF_A} \leq 15$)

IF_R: Preset divide ratio of binary 9-bit programmable reference counter ($2 \leq \text{IF_R} \leq 511$)

f_{OSC} : Reference oscillator frequency

R5 REGISTER

The R5 register address bits (R3 [4:0]) are "01111".

Register R5 is used to set the IF_R divider if the default value is not desired. This register is only active if the SPI_DEF bit in register R0 is 0.

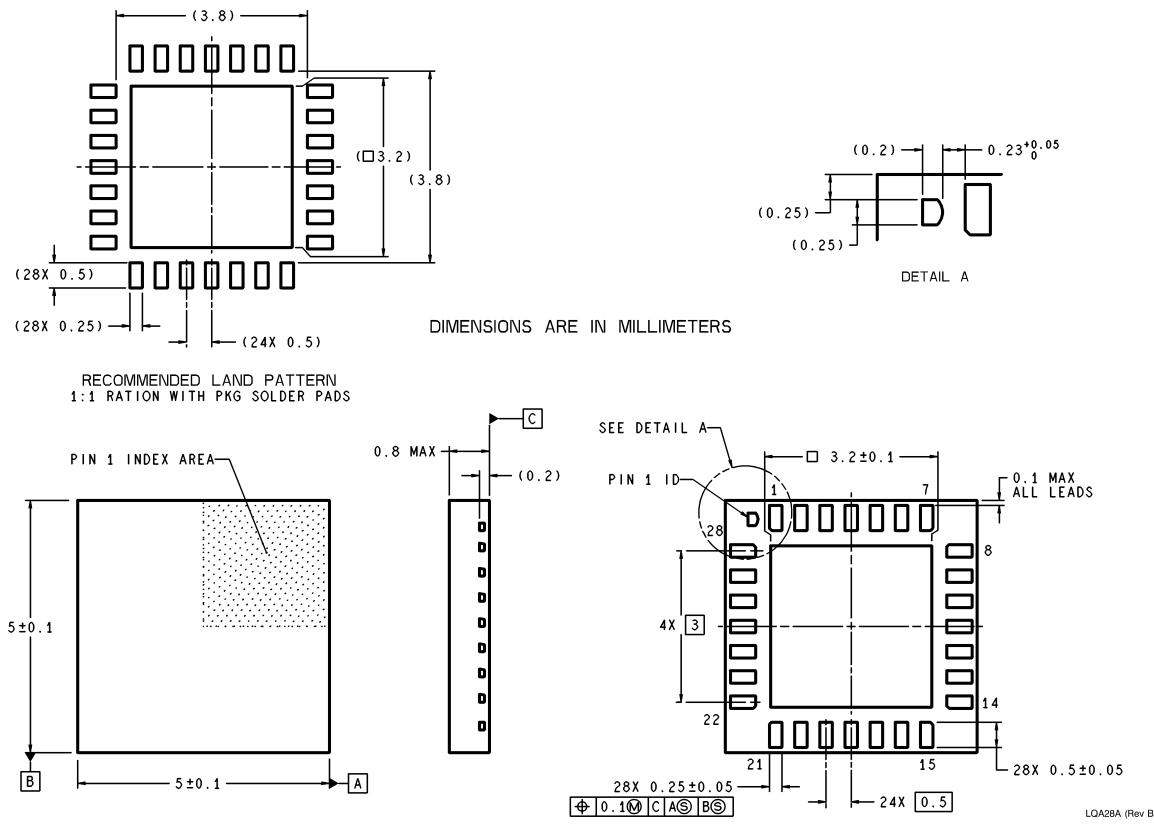
R5 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																								LSB	
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	Data Field																								Address Field		
R5	0	0	1	1	0	0	0	0	1	0	IF_R [8:0]										0	1	1	1	1		

Name	Functions
IF_R [8:0]	IF R Counter 9-bit programmable counter $2 \leq \text{IF_R} \leq 511$

Programming Description (Continued)

R6 REGISTER


The R6 register address bits (R6 [5:0]) are "011111".

Register R6 is used for internal testing of the device and is not intended for customer use. This register is only active if the SPI_DEF bit in register R0 is 0.

R6 REGISTER

Register	MSB	SHIFT REGISTER BIT LOCATION																					LSB	
	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data Field																								
R6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

Physical Dimensions inches (millimeters) unless otherwise noted

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com
Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 01 2171
Français Tel: +33 (0) 1 41 91 8790

**National Semiconductor
Asia Pacific Customer
Support Center**
Email: ap.support@nsc.com

**National Semiconductor
Japan Customer Support Center**
Fax: 81-3-5639-7507
Email: jpn.feedback@nsc.com
Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Mobile Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Transportation and Automotive	www.ti.com/automotive
Video and Imaging	www.ti.com/video

[TI E2E Community Home Page](#)

[e2e.ti.com](#)

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated