

ADC32J2x Dual-Channel, 12-Bit, 50-MSPS to 160-MSPS, Analog-to-Digital Converter with JESD204B Interface

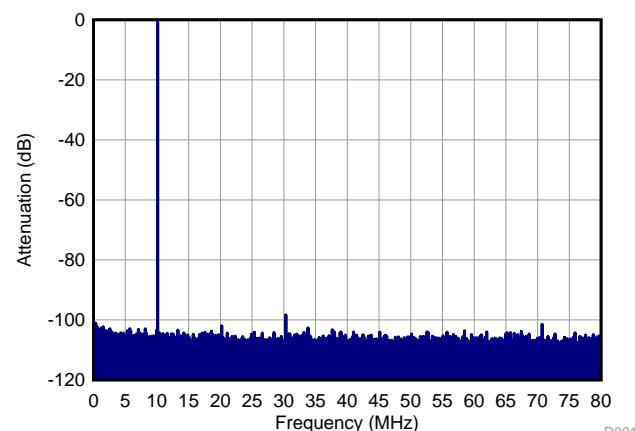
1 Features

- Dual Channel
- 12-Bit Resolution
- Single 1.8-V Supply
- Flexible Input Clock Buffer with Divide-by-1, -2, -4
- SNR = 70.3 dBFS, SFDR = 88 dBc at $f_{IN} = 70$ MHz
- Ultra-Low Power Consumption:
 - 227 mW/Ch at 160 MSPS
- Channel Isolation: 105 dB
- Internal Dither
- JESD204B Serial Interface:
 - Subclass 0, 1, 2 Compliant up to 3.2 Gbps
 - Supports One Lane per ADC up to 160 MSPS
- Support for Multi-Chip Synchronization
- Pin-to-Pin Compatible with 14-Bit Version
- Package: VQFN-48 (7 mm × 7 mm)

2 Applications

- Multi-Carrier, Multi-Mode Cellular Base Stations
- Radar and Smart Antenna Arrays
- Munitions Guidance
- Motor Control Feedback
- Network and Vector Analyzers
- Communications Test Equipment
- Nondestructive Testing
- Microwave Receivers
- Software Defined Radios (SDRs)
- Quadrature and Diversity Radio Receivers

3 Description


The ADC32J2x is a high-linearity, ultra-low power, dual-channel, 12 bit, 50-MSPS to 160-MSPS, analog-to-digital converter (ADC) family. The devices are designed specifically to support demanding, high input frequency signals with large dynamic range requirements. A clock input divider allows more flexibility for system clock architecture design while the SYSREF input enables complete system synchronization. The devices support serial low-voltage differential signaling (LVDS) and JESD204B interfaces in order to reduce the number of interface lines, thus allowing for high system integration density. The JESD204B interface is a serial interface, where the data of each ADC are serialized and output over only one differential pair. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling clock by 20 to derive the bit clock that is used to serialize the 12-bit data from each channel. The devices support subclass 1 with interface speeds up to 3.2 Gbps.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
ADC32J22	VQFN (48)	7.00 mm × 7.00 mm
ADC32J23		
ADC32J24		
ADC32J25		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

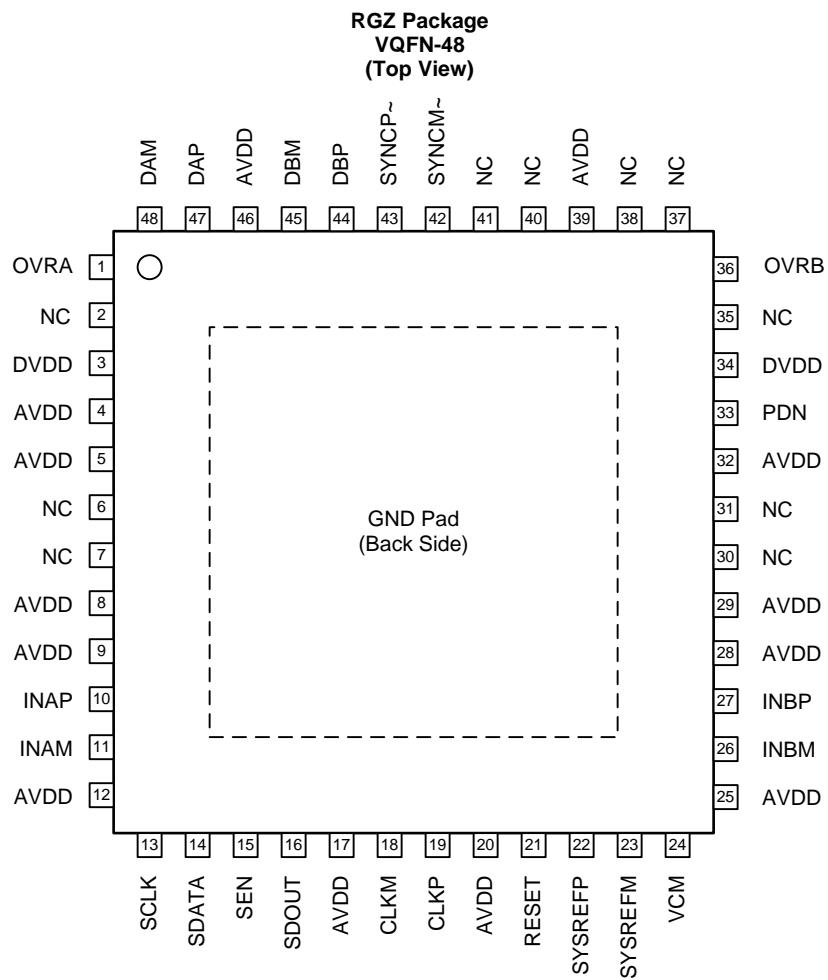
FFT with Dither On
 $(f_s = 160$ MSPS, $f_{IN} = 10$ MHz, SNR = 70.1 dBFS, SFDR = 95 dBc)

D001

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCT PREVIEW Information. Product in design phase of development. Subject to change or discontinuance without notice.

Table of Contents

1	Features	1	8.1	Timing Diagrams	22
2	Applications	1	9	Detailed Description	24
3	Description	1	9.1	Overview	24
4	Revision History	2	9.2	Functional Block Diagram	24
5	Device Comparison Table	3	9.3	Feature Description	25
6	Pin Configuration and Functions	3	9.4	Device Functional Modes	31
7	Specifications	5	9.5	Programming	32
7.1	Absolute Maximum Ratings	5	9.6	Register Maps	36
7.2	Handling Ratings	5	10	Applications and Implementation	50
7.3	Recommended Operating Conditions	5	10.1	Application Information	50
7.4	Thermal Information	6	10.2	Typical Applications	50
7.5	Electrical Characteristics: ADC32J22, ADC32J23	6	11	Power-Supply Recommendations	53
7.6	Electrical Characteristics: ADC32J24, ADC32J2x	6	12	Layout	54
7.7	Electrical Characteristics: General	7	12.1	Layout Guidelines	54
7.8	AC Performance: ADC32J22	8	12.2	Layout Example	54
7.9	AC Performance: ADC32J23	10	13	Device and Documentation Support	55
7.10	AC Performance: ADC32J24	12	13.1	Related Links	55
7.11	AC Performance: ADC32J25	14	13.2	Trademarks	55
7.12	Digital Characteristics	16	13.3	Electrostatic Discharge Caution	55
7.13	Timing Characteristics	17	13.4	Glossary	55
7.14	Typical Characteristics	18	14	Mechanical, Packaging, and Orderable	
8	Parameter Measurement Information	22	Information	55	


4 Revision History

DATE	REVISION	NOTES
May 2014	*	Initial release.

5 Device Comparison Table

INTERFACE	RESOLUTION (Bits)	25 MSPS	50 MSPS	80 MSPS	125 MSPS	160 MSPS
Serial LVDS	12	ADC3221	ADC3222	ADC3223	ADC3224	—
	14	ADC3241	ADC3242	ADC3243	ADC3244	—
JESD204B	12	—	ADC32J22	ADC32J23	ADC32J24	ADC32J2x
	14	—	ADC32J42	ADC32J43	ADC32J44	ADC32J45

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
AVDD	4, 5, 8, 9, 12, 17, 20, 25, 28, 29, 32, 39, 46	I	Analog 1.8-V power supply
CLKM	18	I	Negative differential clock input for the ADC
CLKP	19	I	Positive differential clock input for the ADC
DAM	48	O	Negative serial JESD204B output for channel A
DAP	47	O	Positive serial JESD204B output for channel A
DBM	45	O	Negative serial JESD204B output for channel B
DBP	44	O	Positive serial JESD204B output for channel B
DVDD	3,34	I	Digital 1.8-V power supply
GND	PowerPAD™	I	Ground, 0 V
INAM	11	I	Negative differential analog input for channel A
INAP	10	I	Positive differential analog input for channel A
INBM	26	I	Negative differential analog input for channel B
INBP	27	I	Positive differential analog input for channel B
NC	2, 6, 7, 30, 31, 35, 37, 38, 40, 41	—	Do not connect
OVRA	1	O	Overrange indicator for channel A
OVRB	36	O	Overrange indicator for channel B
PDN	33	I	Power-down control. This pin has an internal 150-kΩ pull-down resistor.
RESET	21	I	Hardware reset; active high. This pin has an internal 150-kΩ pull-down resistor.
SCLK	13	I	Serial interface clock input. This pin has an internal 150-kΩ pull-down resistor.
SDATA	14	I	Serial Interface data input. This pin has an internal 150-kΩ pull-down resistor.
SDOUT	16	O	Serial interface data output
SEN	15	I	Serial interface enable. Active low. This pin has an internal 150-kΩ pull-up resistor to AVDD.
SYNCM~	42	I	Positive JESD204B synch input
SYNCP~	43	I	Negative JESD204B synch input
SYSREFM	23	I	Negative external SYSREF input
SYSREFP	22	I	Positive external SYSREF input
VCM	24	O	Common-mode voltage output for analog inputs

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
Supply voltage range, AVDD		-0.3	2.1	V
Supply voltage range, DVDD		-0.3	2.1	V
Voltage applied to input pins:	INAP, INBP	-0.3	AVDD + 0.3	V
	CLKP, CLKM	-0.3	AVDD + 0.3	V
	SYSREFP, SYSREFM, SYNC _P ~, SYNC _M ~	-0.3	AVDD + 0.3	V
	SCLK, SEN, SDATA, RESET, PDN	-0.3	AVDD + 0.3	V
Temperature range	Operating free-air, T _A	-40	85	°C
	Operating junction, T _J		125	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

		MIN	MAX	UNIT	
T _{stg}	Storage temperature range	-65	150	°C	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2	2	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
SUPPLIES					
AVDD	Analog supply voltage range	1.7	1.8	1.9	V
DVDD	Digital supply voltage range	1.7	1.8	1.9	V
ANALOG INPUT					
V _{ID}	Differential input voltage	For input frequencies < 450 MHz	2		V _{PP}
		For input frequencies < 600 MHz	1		V _{PP}
V _{IC}	Input common-mode voltage	V _{CM} ± 0.025			V
CLOCK INPUT					
Input clock frequency		Sampling clock frequency	25	160 ⁽¹⁾	MSPS
Input clock amplitude (differential)		Sine wave, ac-coupled	1.5		V
		LPECL, ac-coupled	1.6		V
		LVDS, ac-coupled	0.7		V
			50%		
Input clock duty cycle			0.95		V
Input clock common-mode voltage					
DIGITAL OUTPUTS					
C _{LOAD}	Maximum external load capacitance from each output pin to GND		3.3		pF
R _{LOAD}	Single-ended load resistance		100		Ω

(1) With clock divider enabled for default 'div by 1'. Maximum sampling clock frequency for 'div by 4' option is 640MSPS.

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾			UNIT	
ADC32J2x				
RGZ (VQFN)				
48 PINS			°C/W	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	25.7		
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	18.9		
$R_{\theta JB}$	Junction-to-board thermal resistance	3.0		
Ψ_{JT}	Junction-to-top characterization parameter	0.2		
Ψ_{JB}	Junction-to-board characterization parameter	3		
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	0.5		

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

7.5 Electrical Characteristics: ADC32J22, ADC32J23

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, Maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	ADC32J22			ADC32J23			UNIT
	MIN	TYP	MAX	MIN	TYP	MAX	
ADC clock frequency			50			80	MSPS
Resolution	12			12			Bits
1.8-V analog supply current		134			152		mA
1.8-V digital supply current		22			31		mA
Total power dissipation	281			329			mW
Global power-down dissipation		5			5		mW
Wake-up time from global power-down	85			85			us
Standby power-down dissipation	99			105			mW
Wake-up time from standby power-down	35			35			μs

7.6 Electrical Characteristics: ADC32J24, ADC32J2x

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, Maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	ADC32J24			ADC32J2x			UNIT
	MIN	TYP	MAX	MIN	TYP	MAX	
ADC clock frequency			125			160	MSPS
Resolution	12			12			Bits
1.8-V analog supply current		177			192		mA
1.8-V digital supply current		46			56		mA
Total power dissipation	401			454			mW
Global power-down dissipation		5			5		mW
Wake-up time from global power-down	85			85			us
Standby power-down dissipation	112			118			mW
Wake-up time from standby power-down	35			35			μs

7.7 Electrical Characteristics: General

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, Maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG INPUT					
Differential input full-scale		2.0			V_{PP}
Input resistance	Differential at dc	6.5			$\text{k}\Omega$
Input capacitance	Differential at dc	5.2			pF
VCM common-mode voltage output		0.95			V
VCM output current capability		10			mA
Input common-mode current	Per analog input pin	TBD			$\mu\text{A}/\text{MSPS}$
Analog input bandwidth (3 dB)	50- Ω differential source driving 50- Ω termination across INP and INM	450			MHz
DC ACCURACY					
Offset error		–TBD	TBD		mV
Temperature coefficient of offset error			TBD		mV/C
EGREF	Gain error as a result of internal reference inaccuracy alone	–TBD	TBD		%FS
EGCHAN	Gain error of channel alone		TBD		%FS
	Temperature coefficient of EGCHAN		TBD		$\Delta\%\text{FS}/\text{Ch}$
CHANNEL-TO-CHANNEL ISOLATION					
Crosstalk	$f_{\text{IN}} = 10 \text{ MHz}$	105			dB
	$f_{\text{IN}} = 100 \text{ MHz}$	105			dB
	$f_{\text{IN}} = 200 \text{ MHz}$	105			dB
	$f_{\text{IN}} = 230 \text{ MHz}$	105			dB
	$f_{\text{IN}} = 300 \text{ MHz}$	105			dB

7.8 AC Performance: ADC32J22

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J22 ($f_s = 50 \text{ MSPS}$)			UNIT	
		DITHER ON		DITHER OFF		
		MIN	TYP	MAX		
DYNAMIC AC CHARACTERISTICS						
SNR	Signal-to-noise ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.6	70.7	dBFS	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.1		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.1		
		$f_{\text{IN}} = 100 \text{ MHz}$		70.2		
		$f_{\text{IN}} = 170 \text{ MHz}$		68.9		
		$f_{\text{IN}} = 230 \text{ MHz}$		67.9		
NSD	Noise spectral density (averaged across Nyquist zone)	$f_{\text{IN}} = 10 \text{ MHz}$	–144.6	–144.7	dBFS/Hz	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	–144.1		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	–144.1		
		$f_{\text{IN}} = 100 \text{ MHz}$		–144.2		
		$f_{\text{IN}} = 170 \text{ MHz}$		–142.9		
		$f_{\text{IN}} = 230 \text{ MHz}$		–141.9		
SINAD	Signal-to-noise and distortion ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.6	70.7	dBFS	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.1		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.1		
		$f_{\text{IN}} = 100 \text{ MHz}$		70.2		
		$f_{\text{IN}} = 170 \text{ MHz}$		68.8		
		$f_{\text{IN}} = 230 \text{ MHz}$		67.5		
ENOB	Effective number of bits	$f_{\text{IN}} = 10 \text{ MHz}$	11.4	11.5	Bits	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	11.4		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	11.4		
		$f_{\text{IN}} = 100 \text{ MHz}$		11.4		
		$f_{\text{IN}} = 170 \text{ MHz}$		11.1		
		$f_{\text{IN}} = 230 \text{ MHz}$		10.9		
SFDR	Spurious-free dynamic range	$f_{\text{IN}} = 10 \text{ MHz}$	100	95	dBc	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	89		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	89		
		$f_{\text{IN}} = 100 \text{ MHz}$		88		
		$f_{\text{IN}} = 170 \text{ MHz}$		85		
		$f_{\text{IN}} = 230 \text{ MHz}$		79		
HD2	Second harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	100	90	dBc	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	92		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	92		
		$f_{\text{IN}} = 100 \text{ MHz}$		92		
		$f_{\text{IN}} = 170 \text{ MHz}$		85		
		$f_{\text{IN}} = 230 \text{ MHz}$		79		
HD3	Third harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	100	90	dBc	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	89		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	89		
		$f_{\text{IN}} = 100 \text{ MHz}$		88		
		$f_{\text{IN}} = 170 \text{ MHz}$		87		
		$f_{\text{IN}} = 230 \text{ MHz}$		84		

AC Performance: ADC32J22 (continued)

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and -1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J22 ($f_s = 50 \text{ MSPS}$)						UNIT	
		DITHER ON			DITHER OFF				
		MIN	TYP	MAX	MIN	TYP	MAX		
Non HD2, HD3	$f_{\text{IN}} = 10 \text{ MHz}$		95			95		dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	95			95			
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	95			95			
	$f_{\text{IN}} = 100 \text{ MHz}$		96			95			
	$f_{\text{IN}} = 170 \text{ MHz}$		96			95			
	$f_{\text{IN}} = 230 \text{ MHz}$		94			95			
THD	$f_{\text{IN}} = 10 \text{ MHz}$		98			92		dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	90			84			
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	90			84			
	$f_{\text{IN}} = 100 \text{ MHz}$		90			83			
	$f_{\text{IN}} = 170 \text{ MHz}$		83			76			
	$f_{\text{IN}} = 230 \text{ MHz}$		77			74			
IMD3	$f_{\text{IN}1} = 45 \text{ MHz}, f_{\text{IN}2} = 50 \text{ MHz}$		93			93		dBFS	
	$f_{\text{IN}1} = 185 \text{ MHz}, f_{\text{IN}2} = 190 \text{ MHz}$		91			89			

7.9 AC Performance: ADC32J23

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J23 ($f_s = 80 \text{ MSPS}$)			UNIT		
		DITHER ON		DITHER OFF			
		MIN	TYP	MAX			
DYNAMIC AC CHARACTERISTICS							
SNR	Signal-to-noise ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.6	70.6	dBFS		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.4			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.4			
		$f_{\text{IN}} = 100 \text{ MHz}$		70.2			
		$f_{\text{IN}} = 170 \text{ MHz}$		68.9			
		$f_{\text{IN}} = 230 \text{ MHz}$		68.3			
NSD	Noise spectral density (averaged across Nyquist zone)	$f_{\text{IN}} = 10 \text{ MHz}$	–146.6	–146.6	dBFS/Hz		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	–146.4			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	–146.4			
		$f_{\text{IN}} = 100 \text{ MHz}$		–146.2			
		$f_{\text{IN}} = 170 \text{ MHz}$		–144.9			
		$f_{\text{IN}} = 230 \text{ MHz}$		–144.3			
SINAD	Signal-to-noise and distortion ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.6	70.5	dBFS		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.4			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.4			
		$f_{\text{IN}} = 100 \text{ MHz}$		70.2			
		$f_{\text{IN}} = 170 \text{ MHz}$		68.6			
		$f_{\text{IN}} = 230 \text{ MHz}$		67.8			
ENOB	Effective number of bits	$f_{\text{IN}} = 10 \text{ MHz}$	11.4	11.4	Bits		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	11.4			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	11.4			
		$f_{\text{IN}} = 100 \text{ MHz}$		11.4			
		$f_{\text{IN}} = 170 \text{ MHz}$		11.1			
		$f_{\text{IN}} = 230 \text{ MHz}$		11			
SFDR	Spurious-free dynamic range	$f_{\text{IN}} = 10 \text{ MHz}$	95	91	dBc		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	91			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	91			
		$f_{\text{IN}} = 100 \text{ MHz}$		90			
		$f_{\text{IN}} = 170 \text{ MHz}$		82			
		$f_{\text{IN}} = 230 \text{ MHz}$		78			
HD2	Second harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	101	90	dBc		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	96			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	96			
		$f_{\text{IN}} = 100 \text{ MHz}$		93			
		$f_{\text{IN}} = 170 \text{ MHz}$		82			
		$f_{\text{IN}} = 230 \text{ MHz}$		78			
HD3	Third harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	95	90	dBc		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	91			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	91			
		$f_{\text{IN}} = 100 \text{ MHz}$		90			
		$f_{\text{IN}} = 170 \text{ MHz}$		86			
		$f_{\text{IN}} = 230 \text{ MHz}$		84			

AC Performance: ADC32J23 (continued)

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and -1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J23 ($f_s = 80 \text{ MSPS}$)						UNIT	
		DITHER ON			DITHER OFF				
		MIN	TYP	MAX	MIN	TYP	MAX		
Non HD2, HD3	$f_{\text{IN}} = 10 \text{ MHz}$		97			95		dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	91			95			
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	91			95			
	$f_{\text{IN}} = 100 \text{ MHz}$		90			95			
	$f_{\text{IN}} = 170 \text{ MHz}$		91			95			
	$f_{\text{IN}} = 230 \text{ MHz}$		90			95			
THD	$f_{\text{IN}} = 10 \text{ MHz}$		99			88		dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	94			85			
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	94			85			
	$f_{\text{IN}} = 100 \text{ MHz}$		91			82			
	$f_{\text{IN}} = 170 \text{ MHz}$		80			77			
	$f_{\text{IN}} = 230 \text{ MHz}$		76			74			
IMD3	$f_{\text{IN}1} = 45 \text{ MHz}, f_{\text{IN}2} = 50 \text{ MHz}$		95			95		dBFS	
	$f_{\text{IN}1} = 185 \text{ MHz}, f_{\text{IN}2} = 190 \text{ MHz}$		89			88			

7.10 AC Performance: ADC32J24

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J24 ($f_s = 125 \text{ MSPS}$)			UNIT		
		DITHER ON		DITHER OFF			
		MIN	TYP	MAX			
DYNAMIC AC CHARACTERISTICS							
SNR	Signal-to-noise ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.7	70.9	dBFS		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.3			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.3			
		$f_{\text{IN}} = 100 \text{ MHz}$		70			
		$f_{\text{IN}} = 170 \text{ MHz}$		68.8			
		$f_{\text{IN}} = 230 \text{ MHz}$		68.2			
NSD	Noise spectral density (averaged across Nyquist zone)	$f_{\text{IN}} = 10 \text{ MHz}$	–148.7	–148.9	dBFS/Hz		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	–148.3			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	–148.3			
		$f_{\text{IN}} = 100 \text{ MHz}$		–148			
		$f_{\text{IN}} = 170 \text{ MHz}$		–146.8			
		$f_{\text{IN}} = 230 \text{ MHz}$		–146.2			
SINAD	Signal-to-noise and distortion ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.6	70.8	dBFS		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.2			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.2			
		$f_{\text{IN}} = 100 \text{ MHz}$		69.9			
		$f_{\text{IN}} = 170 \text{ MHz}$		68.7			
		$f_{\text{IN}} = 230 \text{ MHz}$		67.5			
ENOB	Effective number of bits	$f_{\text{IN}} = 10 \text{ MHz}$	11.4	11.5	Bits		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	11.4			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	11.4			
		$f_{\text{IN}} = 100 \text{ MHz}$		11.3			
		$f_{\text{IN}} = 170 \text{ MHz}$		11.1			
		$f_{\text{IN}} = 230 \text{ MHz}$		10.9			
SFDR	Spurious-free dynamic range	$f_{\text{IN}} = 10 \text{ MHz}$	90	88	dBc		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	88			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	88			
		$f_{\text{IN}} = 100 \text{ MHz}$		87			
		$f_{\text{IN}} = 170 \text{ MHz}$		85			
		$f_{\text{IN}} = 230 \text{ MHz}$		77			
HD2	Second harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	91	90	dBc		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	90			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	90			
		$f_{\text{IN}} = 100 \text{ MHz}$		88			
		$f_{\text{IN}} = 170 \text{ MHz}$		85			
		$f_{\text{IN}} = 230 \text{ MHz}$		77			
HD3	Third harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	90	90	dBc		
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	88			
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	88			
		$f_{\text{IN}} = 100 \text{ MHz}$		87			
		$f_{\text{IN}} = 170 \text{ MHz}$		85			
		$f_{\text{IN}} = 230 \text{ MHz}$		82			

AC Performance: ADC32J24 (continued)

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J24 ($f_s = 125 \text{ MSPS}$)						UNIT	
		DITHER ON			DITHER OFF				
		MIN	TYP	MAX	MIN	TYP	MAX		
Non HD2, HD3	$f_{\text{IN}} = 10 \text{ MHz}$		95		95		95	dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	95		95		95		
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	95		95		95		
	$f_{\text{IN}} = 100 \text{ MHz}$		95		95		95		
	$f_{\text{IN}} = 170 \text{ MHz}$		92		95		95		
	$f_{\text{IN}} = 230 \text{ MHz}$		92		95		95		
THD	$f_{\text{IN}} = 10 \text{ MHz}$		89		85		85	dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	88		83		83		
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	88		83		83		
	$f_{\text{IN}} = 100 \text{ MHz}$		86		82		82		
	$f_{\text{IN}} = 170 \text{ MHz}$		83		79		79		
	$f_{\text{IN}} = 230 \text{ MHz}$		75		73		73		
IMD3	$f_{\text{IN}1} = 45 \text{ MHz}, f_{\text{IN}2} = 50 \text{ MHz}$		95		95		95	dBFS	
	$f_{\text{IN}1} = 185 \text{ MHz}, f_{\text{IN}2} = 190 \text{ MHz}$		87		86		86		

7.11 AC Performance: ADC32J25

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J25 ($f_S = 160 \text{ MSPS}$)			UNIT	
		DITHER ON		DITHER OFF		
		MIN	TYP	MAX		
DYNAMIC AC CHARACTERISTICS						
SNR	Signal-to-noise ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.5	70.6	dBFS	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.1		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.1		
		$f_{\text{IN}} = 100 \text{ MHz}$		69.7		
		$f_{\text{IN}} = 170 \text{ MHz}$		68.8		
		$f_{\text{IN}} = 230 \text{ MHz}$		67.9		
NSD	Noise spectral density (averaged across Nyquist zone)	$f_{\text{IN}} = 10 \text{ MHz}$	–149.5	–149.6	dBFS/Hz	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	–149.1		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	–149.1		
		$f_{\text{IN}} = 100 \text{ MHz}$		–148.7		
		$f_{\text{IN}} = 170 \text{ MHz}$		–147.8		
		$f_{\text{IN}} = 230 \text{ MHz}$		–146.9		
SINAD	Signal-to-noise and distortion ratio	$f_{\text{IN}} = 10 \text{ MHz}$	70.5	70.3	dBFS	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	70.1		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	70.1		
		$f_{\text{IN}} = 100 \text{ MHz}$		69.6		
		$f_{\text{IN}} = 170 \text{ MHz}$		68.6		
		$f_{\text{IN}} = 230 \text{ MHz}$		67.4		
ENOB	Effective number of bits	$f_{\text{IN}} = 10 \text{ MHz}$	11.4	11.4	Bits	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	11.4		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	11.4		
		$f_{\text{IN}} = 100 \text{ MHz}$		11.3		
		$f_{\text{IN}} = 170 \text{ MHz}$		11.1		
		$f_{\text{IN}} = 230 \text{ MHz}$		10.9		
SFDR	Spurious-free dynamic range	$f_{\text{IN}} = 10 \text{ MHz}$	89	84	dBc	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	87		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	87		
		$f_{\text{IN}} = 100 \text{ MHz}$		85		
		$f_{\text{IN}} = 170 \text{ MHz}$		82		
		$f_{\text{IN}} = 230 \text{ MHz}$		78		
HD2	Second harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	97	90	dBc	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	92		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	92		
		$f_{\text{IN}} = 100 \text{ MHz}$		88		
		$f_{\text{IN}} = 170 \text{ MHz}$		84		
		$f_{\text{IN}} = 230 \text{ MHz}$		78		
HD3	Third harmonic distortion	$f_{\text{IN}} = 10 \text{ MHz}$	89	90	dBc	
		$f_{\text{IN}} = 70 \text{ MHz}$	TBD	87		
		$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	87		
		$f_{\text{IN}} = 100 \text{ MHz}$		85		
		$f_{\text{IN}} = 170 \text{ MHz}$		82		
		$f_{\text{IN}} = 230 \text{ MHz}$		80		

AC Performance: ADC32J25 (continued)

Typical values are at $T_A = 25^\circ\text{C}$, full temperature range is $T_{\text{MIN}} = -40^\circ\text{C}$ to $T_{\text{MAX}} = 85^\circ\text{C}$, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	ADC32J25 ($f_s = 160 \text{ MSPS}$)						UNIT	
		DITHER ON			DITHER OFF				
		MIN	TYP	MAX	MIN	TYP	MAX		
Non HD2, HD3	$f_{\text{IN}} = 10 \text{ MHz}$		97			95		dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	94			95			
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	94			95			
	$f_{\text{IN}} = 100 \text{ MHz}$		92			95			
	$f_{\text{IN}} = 170 \text{ MHz}$		93			95			
	$f_{\text{IN}} = 230 \text{ MHz}$		92			95			
THD	$f_{\text{IN}} = 10 \text{ MHz}$		95			81		dBc	
	$f_{\text{IN}} = 70 \text{ MHz}$	TBD	90			80			
	$f_{\text{IN}} = 70 \text{ MHz}, T_A = 25^\circ\text{C}$	TBD	90			80			
	$f_{\text{IN}} = 100 \text{ MHz}$		86			79			
	$f_{\text{IN}} = 170 \text{ MHz}$		82			77			
	$f_{\text{IN}} = 230 \text{ MHz}$		76			73			
IMD3	$f_{\text{IN}1} = 45 \text{ MHz}, f_{\text{IN}2} = 50 \text{ MHz}$		100			100		dBFS	
	$f_{\text{IN}1} = 185 \text{ MHz}, f_{\text{IN}2} = 190 \text{ MHz}$		89			88			

7.12 Digital Characteristics

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD = DVDD = 1.8 V and –1-dBFS differential input, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS (RESET, SCLK, SEN, SDATA, PDN)⁽¹⁾					
V_{IH}	High-level input voltage	All digital inputs support 1.8-V and 3.3-V logic levels	1.2		V
V_{IL}	Low-level input voltage	All digital inputs support 1.8-V and 3.3-V logic levels		0.4	V
I_{IH}	High-level input current	SEN	0		μ A
		RESET, SCLK, SDATA, PDN	10		μ A
I_{IL}	Low-level input current	SEN	10		μ A
		RESET, SCLK, SDATA, PDN	0		μ A
DIGITAL INPUTS (SYNCP~, SYNCM~, SYSREFP, SYSREFM)					
V_{IH}	High-level input voltage		1.3		V
V_{IL}	Low-level input voltage		0.5		V
$V_{(CM_DIG)}$	Common-mode voltage for SYNC~ and SYSREF		0.9		V
DIGITAL OUTPUTS (SDOUT, OVRA, OVRB)					
V_{OH}	High-level output voltage		$DVDD - 0.1$	$DVDD$	V
V_{OL}	Low-level output voltage			0.1	V
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)⁽²⁾					
V_{OH}	High-level output voltage		AVDD		V
V_{OL}	Low-level output voltage		AVDD – 0.4		V
V_{OD}	Output differential voltage		0.4		V
V_{OC}	Output common-mode voltage		AVDD – 0.2		V
Transmitter short-circuit current	Transmitter pins shorted to any voltage between –0.25 V and 1.45 V	–100	100		mA
Z_{os}	Single-ended output impedance		50		Ω
Output capacitance	Output capacitance inside the device, from either output to ground		2		pF

- RESET, SCLK, SDATA, and PDN pins have 150-k Ω (typical) internal pull-down resistor to ground, while SEN pin has 150-k Ω (typical) pull-up resistor to AVDD.
- 50- Ω , single-ended external termination to 1.8 V.

7.13 Timing Characteristics

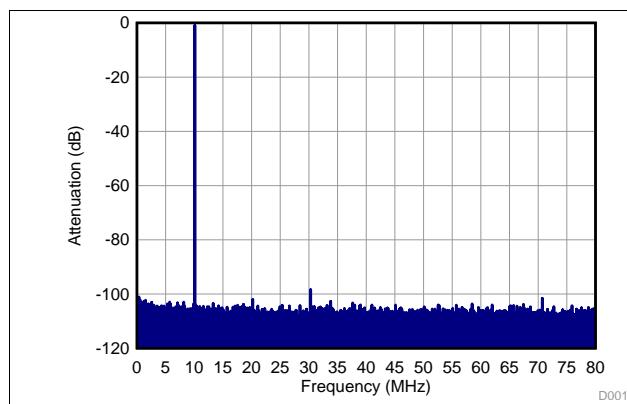
Typical values are at 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum and maximum values are across the full temperature range: $T_{MIN} = -40^{\circ}\text{C}$ to $T_{MAX} = 85^{\circ}\text{C}$. See [Figure 25](#).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SAMPLE TIMING CHARACTERISTICS					
Aperture delay		0.85	1.25	1.65	ns
Aperture delay matching	Between two channels on the same device		±70		ps
	Between two devices at the same temperature and supply voltage		±150		ps
Aperture jitter		200			f_S rms
Wake-up time	Time to valid data after coming out of STANDBY mode	35	TBD		μs
	Time to valid data after coming out of global power-down	85	TBD		μs
t_{SU_SYNC-}	Setup time for SYNC~	Referenced to input clock rising edge	1		ns
t_{H_SYNC-}	Hold time for SYNC~	Referenced to input clock rising edge	100		ps
t_{SU_SYSREF}	Setup time for SYSREF	Referenced to input clock rising edge	1		ns
t_{H_SYSREF}	Hold time for SYSREF	Referenced to input clock rising edge	100		ps
CML OUTPUT TIMING CHARACTERISTICS					
Unit interval		320	1667		ps
Serial output data rate			3.125		Gbps
Total jitter	3.125 Gbps (20x mode, $f_S = 156.25$ MSPS)		0.3		$\mu\text{-UI}$
t_R, t_F	Data rise time, data fall time	Rise and fall times measured from 20% to 80%, differential output waveform, 600 Mbps \leq bit rate \leq 3.125 Gbps	105		ps

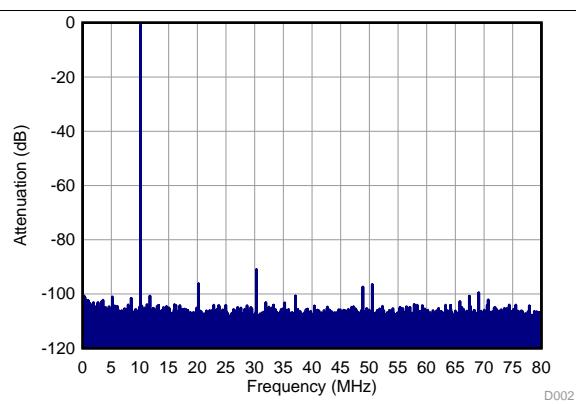
Table 1. Latency in Different Modes⁽¹⁾⁽²⁾

MODE	PARAMETER	LATENCY (N Cycles)	TYPICAL DATA DELAY (t_D , ns)
20x	ADC latency	17	$0.29 \times t_S + 3$
	Normal OVR latency	9	$0.5 \times t_S + 2$
	Fast OVR latency	7	$0.5 \times t_S + 2$
	From SYNC~ falling edge to CGS phase ⁽³⁾	15	$0.3 \times t_S + 4$
	From SYNC~ rising edge to ILA sequence ⁽⁴⁾	17	$0.3 \times t_S + 4$
40x	ADC latency	16	$0.85 \times t_S + 3.9$
	Normal OVR latency	9	$0.5 \times t_S + 2$
	Fast OVR latency	7	$0.5 \times t_S + 2$
	From SYNC~ falling edge to CGS phase ⁽³⁾	14	$0.9 \times t_S + 4$
	From SYNC~ rising edge to ILA sequence ⁽⁴⁾	12	$0.9 \times t_S + 4$

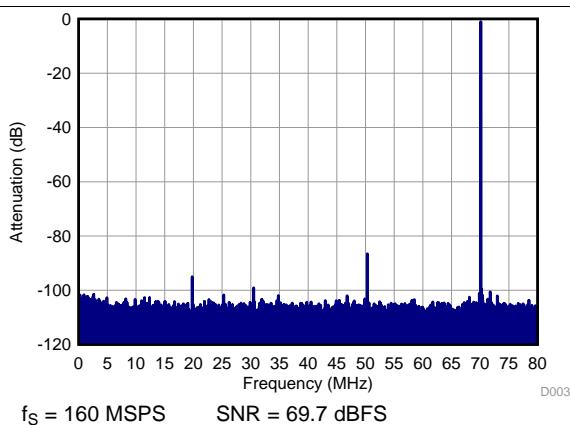
(1) Overall latency = latency + t_D .

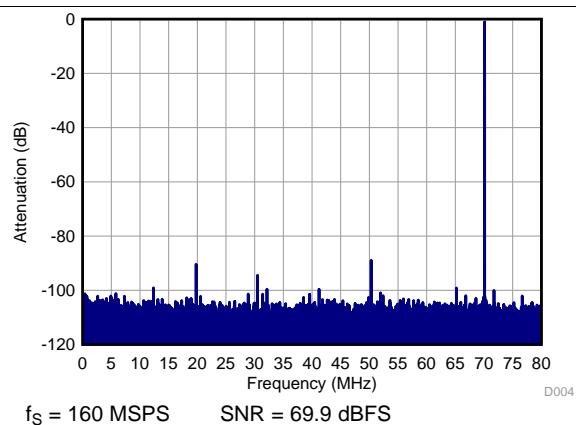

(2) t_S is the time period of the ADC conversion clock.

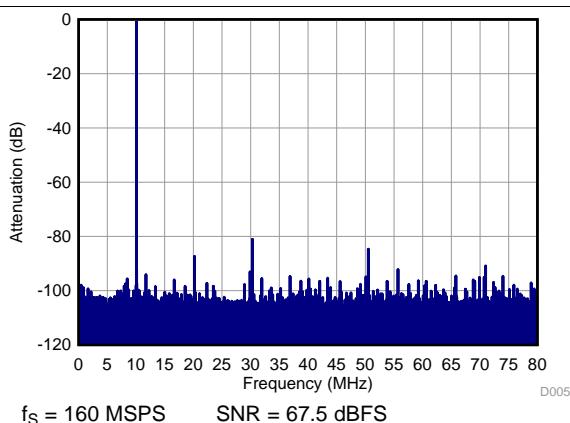
(3) Latency is specified for subclass 2. In subclass 0, the SYNC~ falling edge to CGS phase latency is 16 clock cycles in 10x mode and 15 clock cycles in 20x mode.


(4) Latency is specified for subclass 2. In subclass 0, the SYNC~ rising edge to ILA sequence latency is 11 clock cycles in 10x mode and 11 clock cycles in 20x mode.

7.14 Typical Characteristics


Typical values are at $T_A = 25^\circ\text{C}$, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2- V_{PP} full-scale, and 32k-point FFT, unless otherwise noted.


Figure 1. FFT with Dither On


Figure 2. FFT with Dither Off

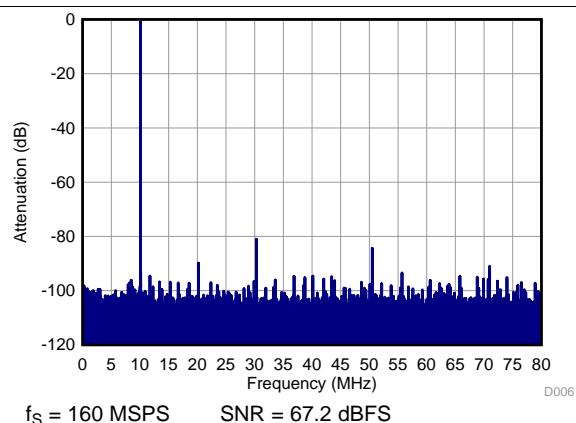

Figure 3. FFT with Dither On

Figure 4. FFT with Dither Off

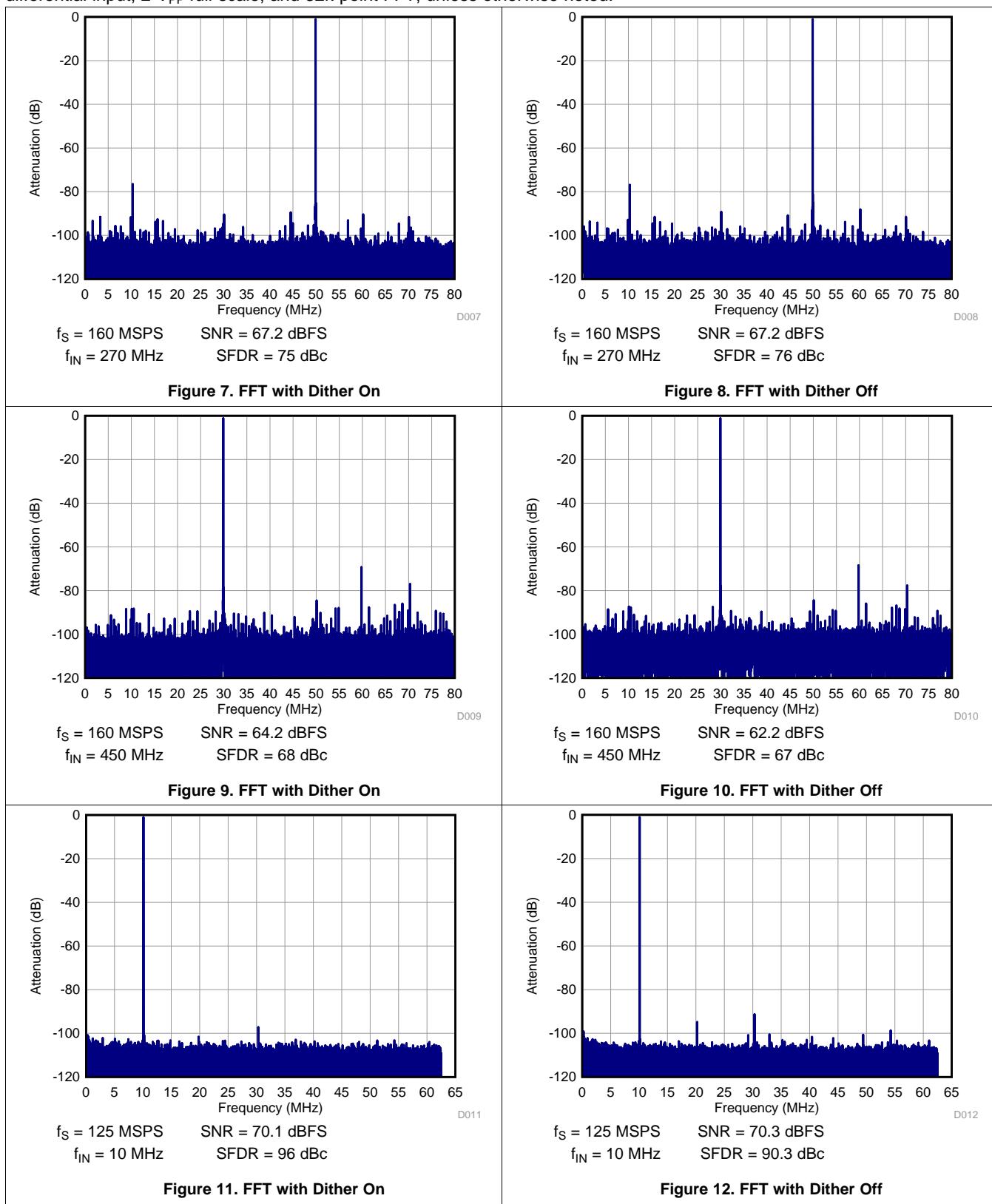
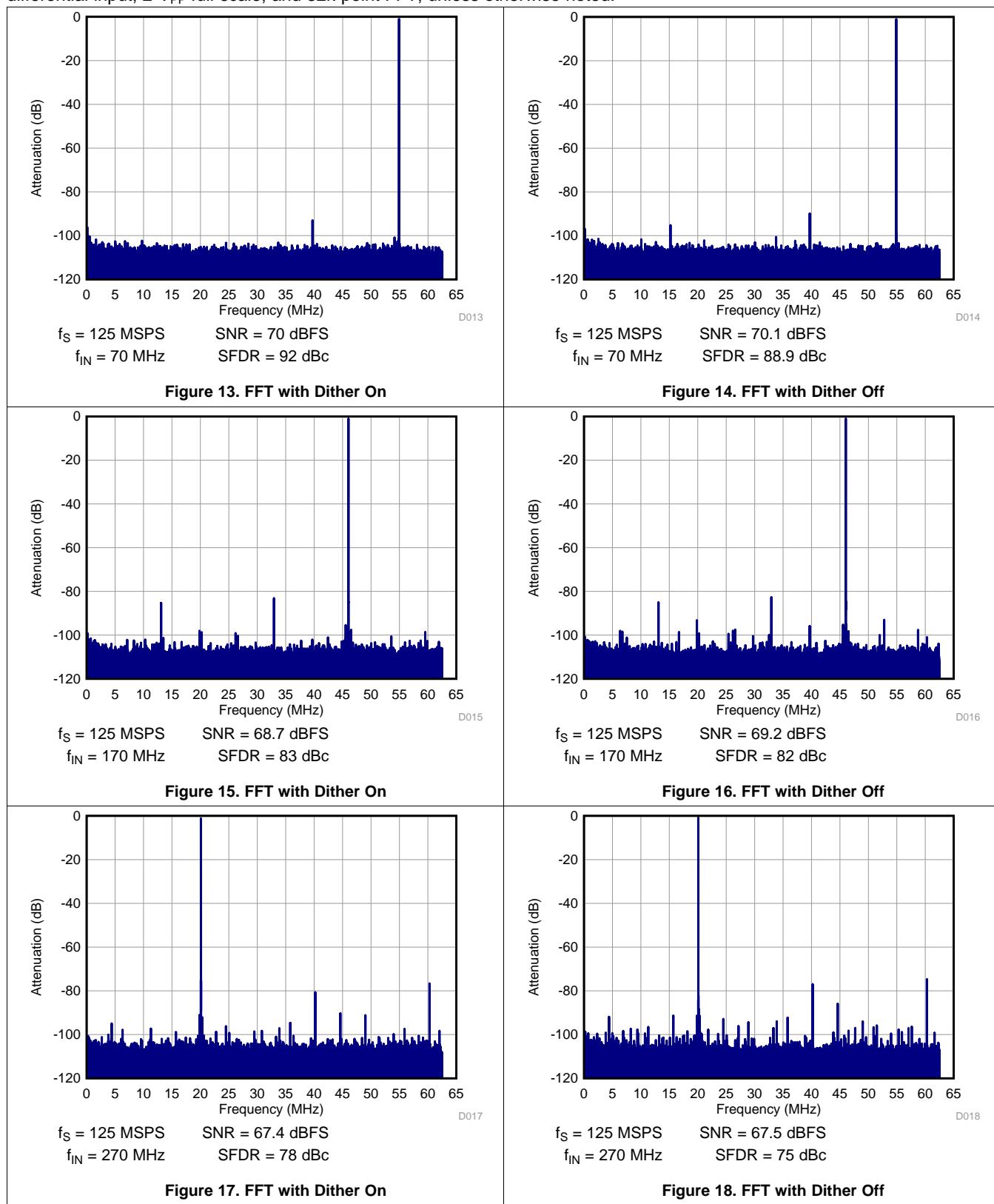
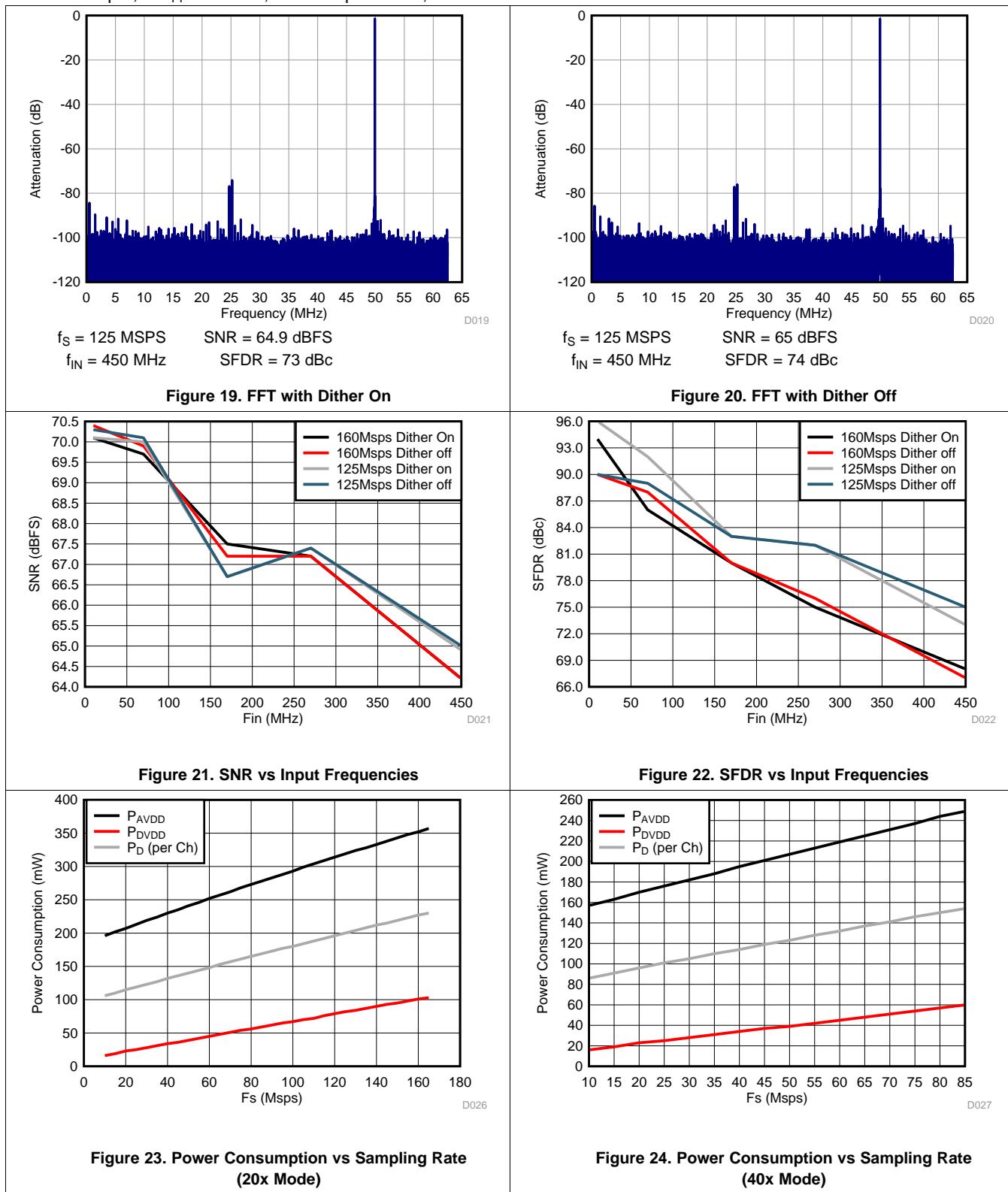

Figure 5. FFT with Dither On

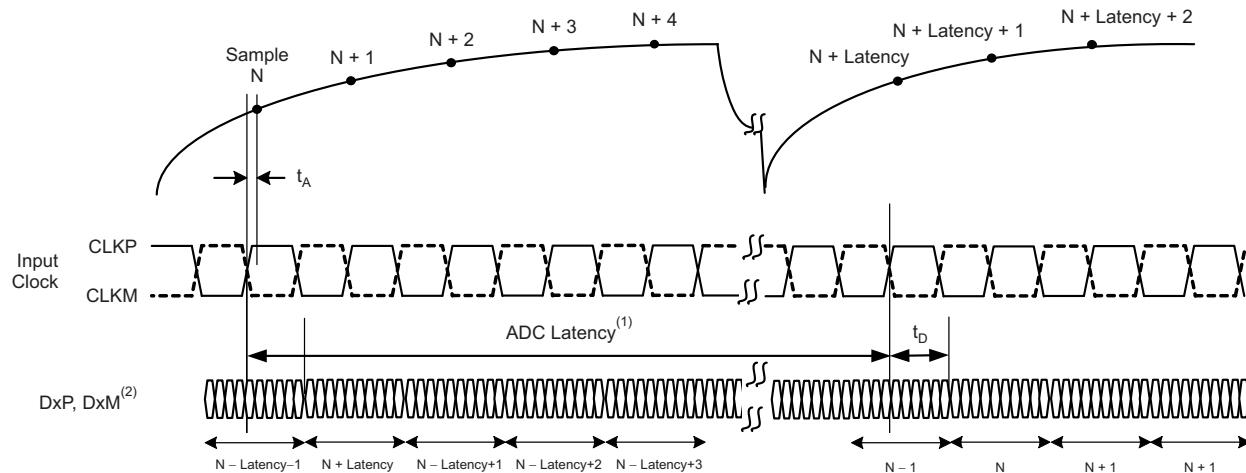
Figure 6. FFT with Dither Off


Typical Characteristics (continued)

Typical values are at $T_A = 25^\circ\text{C}$, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, -1-dBFS differential input, 2- V_{PP} full-scale, and 32k-point FFT, unless otherwise noted.

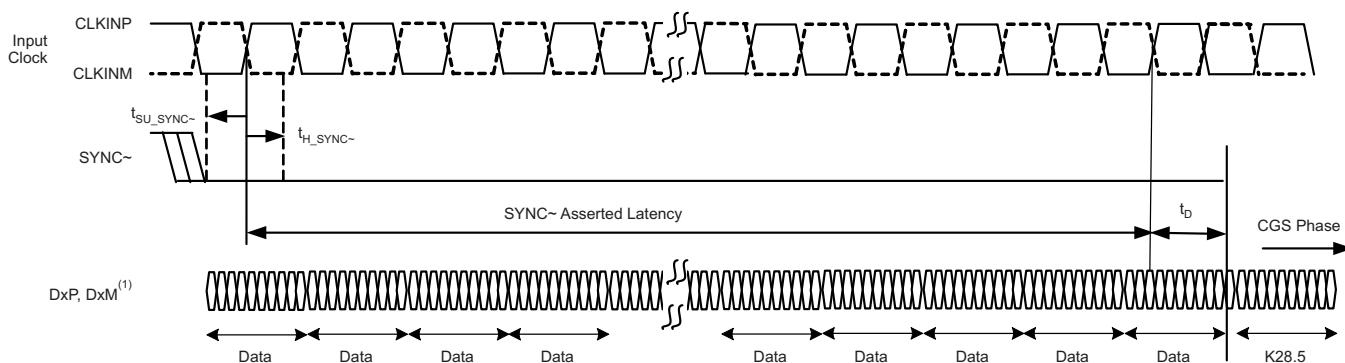

Typical Characteristics (continued)

Typical values are at $T_A = 25^\circ\text{C}$, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, -1-dBFS differential input, 2- V_{PP} full-scale, and 32k-point FFT, unless otherwise noted.


Typical Characteristics (continued)

Typical values are at $T_A = 25^\circ\text{C}$, ADC sampling rate = 160 MSPS, 50% clock duty cycle, $\text{AVDD} = \text{DVDD} = 1.8 \text{ V}$, -1-dBFS differential input, 2-V_{PP} full-scale, and 32k-point FFT, unless otherwise noted.

8 Parameter Measurement Information


8.1 Timing Diagrams

(1) Overall latency = ADC latency + t_D .

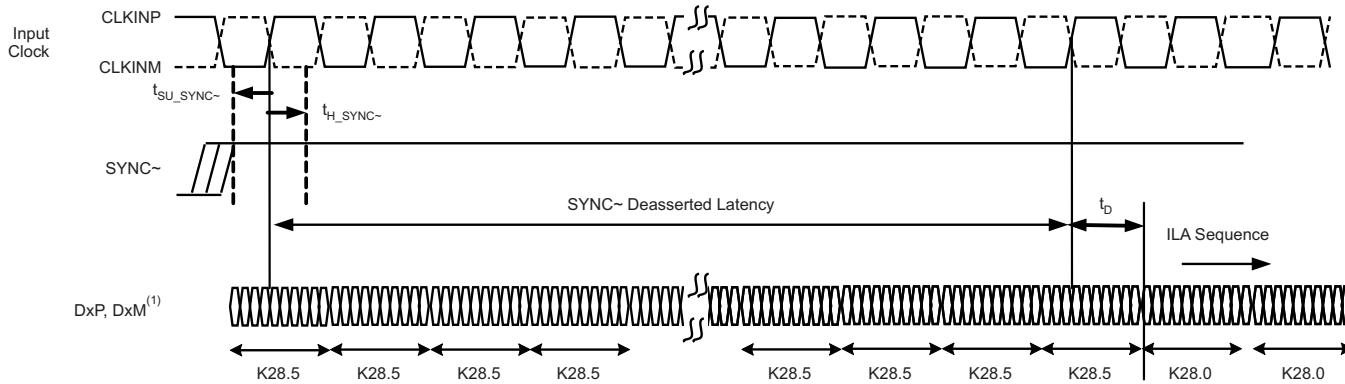

(2) x = A for channel A and B for channel B.

Figure 25. ADC Latency

(1) x = A for channel A and B for channel B.

Figure 26. SYNC~ Latency in CGS Phase (Two-Lane Mode)

(1) x = A for channel A and B for channel B.

Figure 27. SYNC~ Latency in ILAS Phase (Two-Lane Mode)

Timing Diagrams (continued)

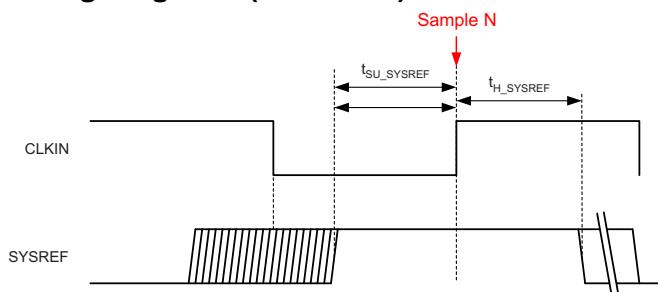
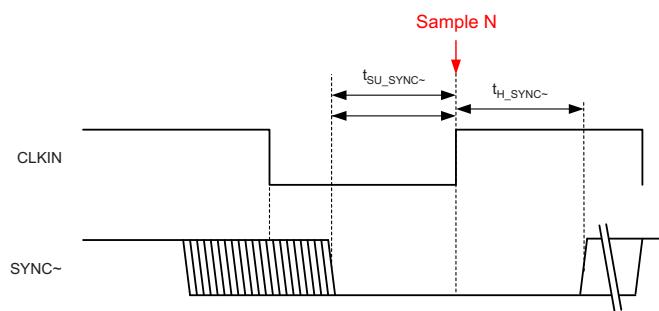
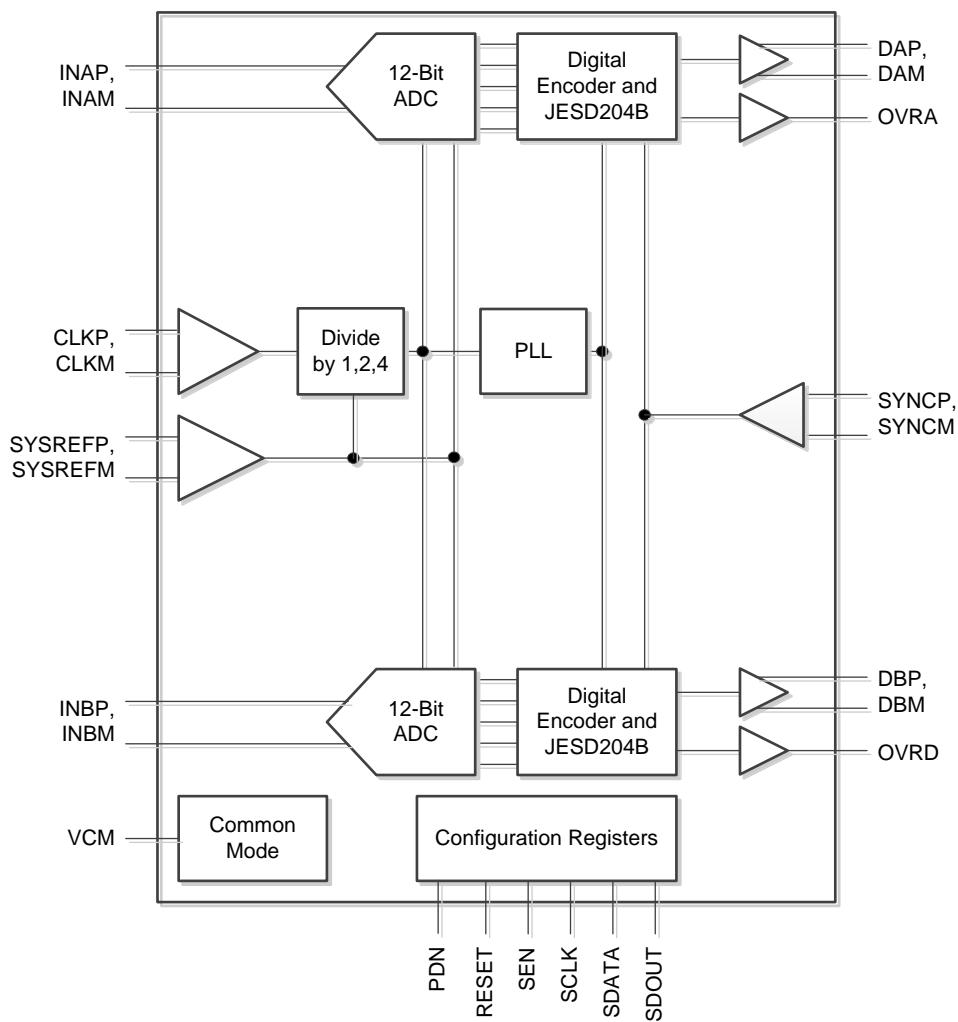


Figure 28. SYSREF Timing (Subclass 1)



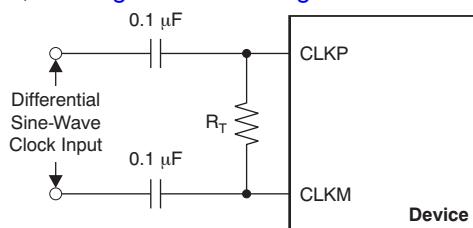

Figure 29. SYNC~ Timing (Subclass 2)

9 Detailed Description

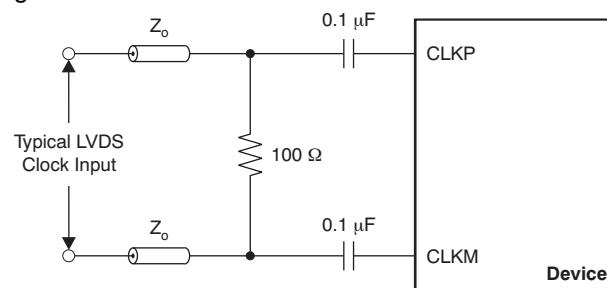
9.1 Overview

The ADC32J2x are a high-linearity, ultra-low power, dual-channel, 12-bit, 50-MSPS to 160-MSPS, analog-to-digital converter (ADC) family. The devices are designed specifically to support demanding, high input frequency signals with large dynamic range requirements. A clock input divider allows more flexibility for system clock architecture design while the SYSREF input enables complete system synchronization. The devices support a JESD204B interface in order to reduce the number of interface lines, thus allowing for high system integration density. The JESD204B interface is a serial interface, where the data of each ADC are serialized and output over only one differential pair. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling clock by 20 to derive the bit clock that is used to serialize the 12-bit data from each channel. The devices support subclass 1 with interface data rates up to 3.2 Gbps.

9.2 Functional Block Diagram

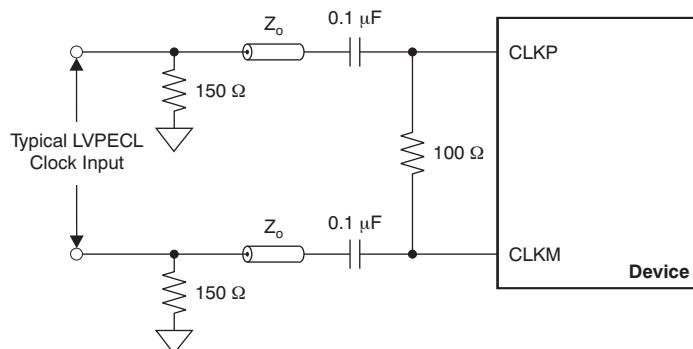

9.3 Feature Description

9.3.1 Analog Inputs


The ADC32J2x analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must swing symmetrically between ($V_{CM} + 0.5$ V) and ($V_{CM} - 0.5$ V), resulting in a $2\text{-}V_{PP}$ (default) differential input swing. The input sampling circuit has a 3-dB bandwidth that extends up to 450 MHz (50- Ω source driving 50- Ω termination between INP and INM).

9.3.2 Clock Input

The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to 1.4 V using internal 5-k Ω resistors. The self-bias clock inputs of the ADC32J2x can be driven by the transformer-coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in [Figure 30](#), [Figure 31](#), and [Figure 32](#). See [Figure 33](#) for details regarding the internal clock buffer.



NOTE: R_T = termination resistor, if necessary.

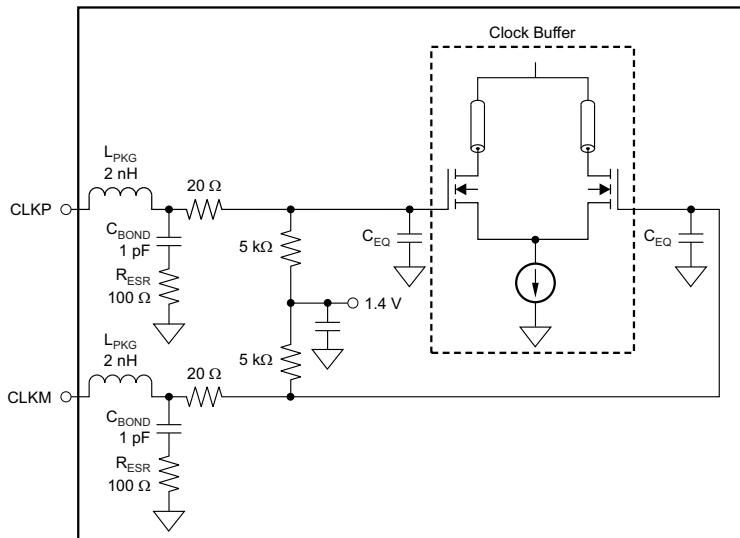
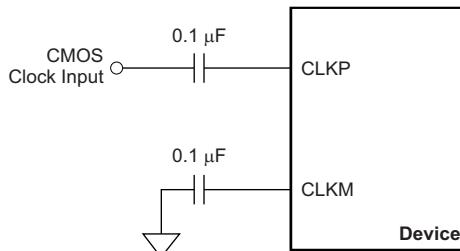


Figure 30. Differential Sine-Wave Clock Driving Circuit

Figure 31. LVDS Clock Driving Circuit


Figure 32. LVPECL Clock Driving Circuit

NOTE: C_{EQ} is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.

Figure 33. Internal Clock Buffer

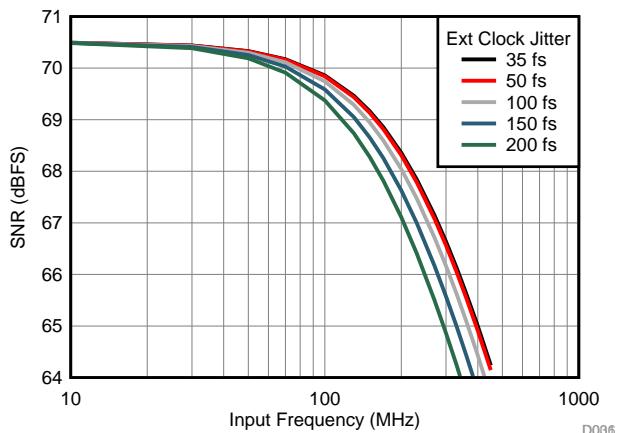
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1- μ F capacitor, as shown in [Figure 34](#). However, for best performance the clock inputs must be driven differentially, thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter. There is no change in performance with a non-50% duty cycle clock input.

Figure 34. Single-Ended Clock Driving Circuit

9.3.2.1 SNR and Clock Jitter

The signal-to-noise ratio of the ADC is limited by three different factors: quantization noise, thermal noise, and jitter noise, as shown in [Equation 1](#). Quantization noise is typically not noticeable in pipeline converters and is 74 dB for a 12-bit ADC. Thermal noise limits SNR at low input frequencies while the clock jitter sets SNR for higher input frequencies.

$$SNR_{ADC}[dBc] = -20 \cdot \log \sqrt{\left(10^{\frac{SNR_{Quantization\ Noise}}{20}} \right)^2 + \left(10^{\frac{SNR_{Thermal\ Noise}}{20}} \right)^2 + \left(10^{\frac{SNR_{Jitter}}{20}} \right)^2} \quad (1)$$


The SNR limitation resulting from sample clock jitter can be calculated with [Equation 2](#):

$$SNR_{Jitter}[dBc] = -20 \cdot \log(2\pi \cdot f_{in} \cdot T_{jitter}) \quad (2)$$

The total clock jitter (T_{jitter}) has two components: the internal aperture jitter (200 fs for the device) which is set by the noise of the clock input buffer and the external clock. T_{jitter} can be calculated with [Equation 3](#):

$$T_{jitter} = \sqrt{(T_{jitter,Ext.Clock_Input})^2 + (T_{Aperture_ADC})^2} \quad (3)$$

External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass filters at the clock input while a faster clock slew rate improves the ADC aperture jitter. The devices have a thermal noise of 73.5 dBFS and internal aperture jitter of 200 fs. The SNR, depending on the amount of external jitter for different input frequencies, is shown in [Figure 35](#).

Figure 35. SNR vs Frequency vs Jitter

9.3.2.2 Input Clock Divider

The devices are equipped with an internal divider on the clock input. The divider allows operation with a faster input clock, thus simplifying the system clock distribution design. The clock divider can be bypassed (divide-by-1) for operation with a 160-MHz clock while divide-by-2 option supports a maximum input clock of 320 MHz and the divide-by-4 option supports a maximum input clock frequency of 640 MHz.

9.3.3 Power-Down Control

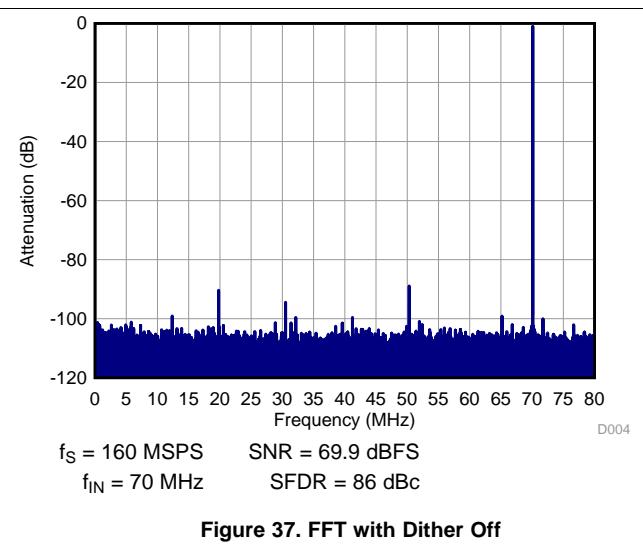
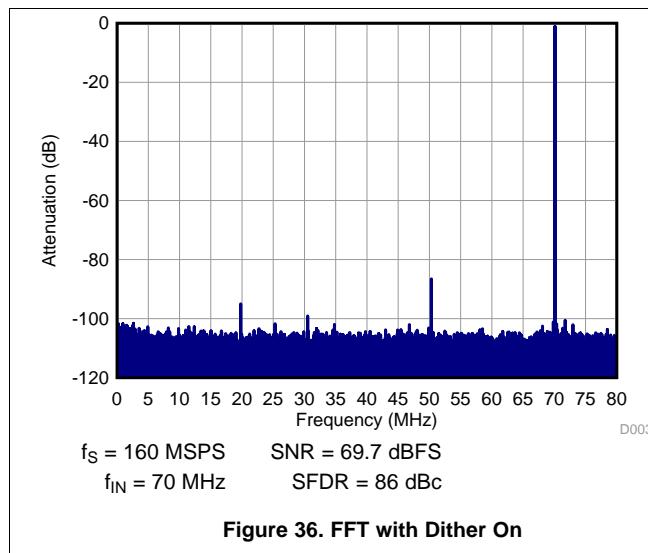
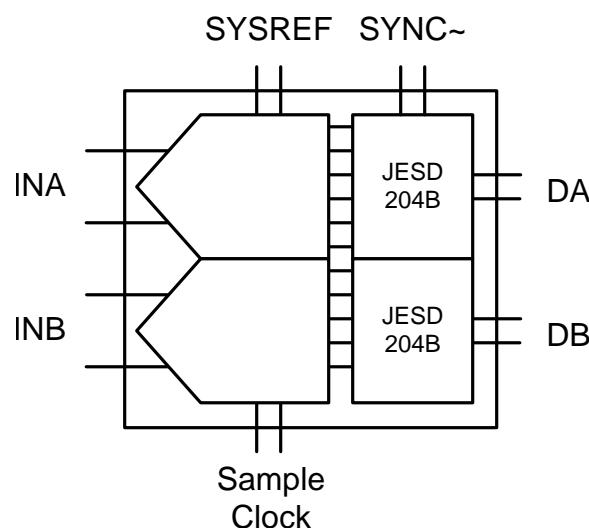
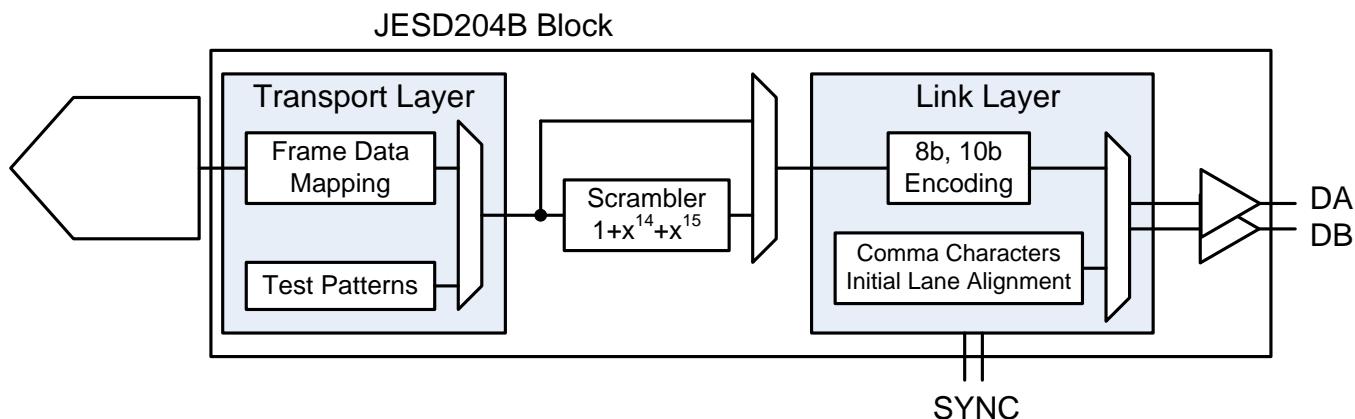


The power-down functions of the ADC32J2x can be controlled either through the parallel control pin (PDN) or through an SPI register setting (see [Figure 61](#), register 15h). The PDN pin can also be configured via SPI to a global power-down or standby functionality.

Table 2. Power-Down Modes

FUNCTION	POWER CONSUMPTION (mW)	WAKE-UP TIME (μs)
Global power-down	5	85
Standby	118	35


9.3.4 Internal Dither Algorithm

The ADC32J2x uses an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the dither algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither algorithm can be turned off by using the DIS DITH CHx registers bits. [Figure 36](#) and [Figure 37](#) show the effect of using dither algorithms.



9.3.5 JESD204B Interface

The ADC32J2x support device subclass 0, 1, and 2 with a maximum output data rate of 3.2 Gbps for each serial transmitter, as shown in [Figure 38](#). The data of each ADC are serialized by 20x using an internal PLL and then transmitted out on one differential pair each. An external SYSREF (subclass 1) or SYNC (subclass 2) signal is used to align all internal clock phases and the local multiframe clock to a specific sampling clock edge. This process allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty.

The JESD204B transmitter block consists of the transport layer, the data scrambler, and the link layer, as shown in [Figure 39](#). The transport layer maps the ADC output data into the selected JESD204B frame data format and determines if the ADC output data or test patterns are transmitted. The link layer performs the 8b or 10b data encoding and the synchronization and initial lane alignment using the SYNC input signal. Optionally, data from the transport layer can be scrambled.

Figure 39. JESD204B Block

9.3.5.1 JESD204B Initial Lane Alignment (ILA)

The initial lane alignment process is started by the receiving device by asserting the SYNC signal. When a logic high is detected on the SYNC input pins, the ADC32J2x starts transmitting comma (K28.5) characters to establish code group synchronization. When synchronization is complete, the receiving device de-asserts the SYNC signal and the ADC32J2x starts the initial lane alignment sequence with the next local multiframe clock boundary. The ADC32J2x transmits four multiframe, each containing K frames (K is SPI programmable). Each multiframe contains the frame start and end symbols; the second multiframe also contains the JESD204 link configuration data.

9.3.5.2 JESD204B Test Patterns

There are three different test patterns available in the transport layer of the JESD204B interface. The ADC32J2x supports a clock output, an encoded, and a PRBS ($2^{15} - 1$) pattern. These patterns can be enabled via SPI register writes and are located in address 26h (bits 7:6).

9.3.5.3 JESD204B Frame Assembly

The JESD204B standard defines the following parameters:

- L is the number of lanes per link,
- M is the number of converters per device,
- F is the number of octets per frame clock period, and
- S is the number of samples per frame.

[Table 3](#) lists the available JESD204B format and valid range for the ADC32J2x. The ranges are limited by the SERDES line rate and the maximum ADC sample frequency.

Table 3. LMFS Values and Interface Rate

L	M	F	S	MINIMUM ADC SAMPLING RATE (MSPS)	MAXIMUM f _{SERDES} (Mbps)	MAXIMUM ADC SAMPLING RATE (Mps)	MAXIMUM f _{SERDES} (GSPS)	MODE
2	2	2	1	15	300	160	3.2	20x (default)
1	2	4	1	10	400	80	3.2	40x

The detailed frame assembly for quad-channel mode is shown in [Figure 40](#). The frame assembly configuration can be changed from 20x (default) to 40x by setting the registers listed in [Table 4](#).

	LMFS = 2221				LMFS = 1241			
Lane DA	A ₀ [11:4]	A ₀ [3:0], 0000	A ₁ [11:4]	A ₁ [3:0], 0000	A ₀ [11:4]	A ₀ [3:0], 0000	B ₀ [11:4]	B ₀ [3:0], 0000
Lane DB	B ₀ [11:4]	B ₀ [3:0], 0000	B ₁ [11:4]	B ₁ [3:0], 0000	A ₁ [11:4]	A ₁ [3:0], 0000	B ₁ [11:4]	B ₁ [3:0], 0000

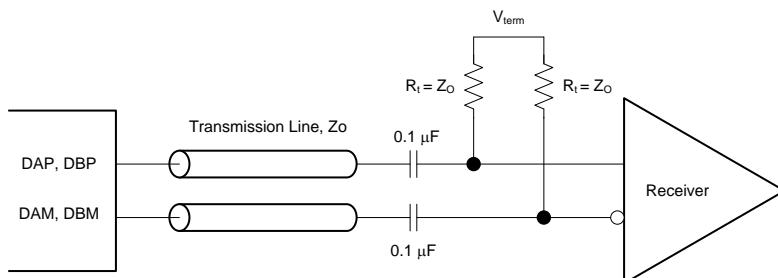
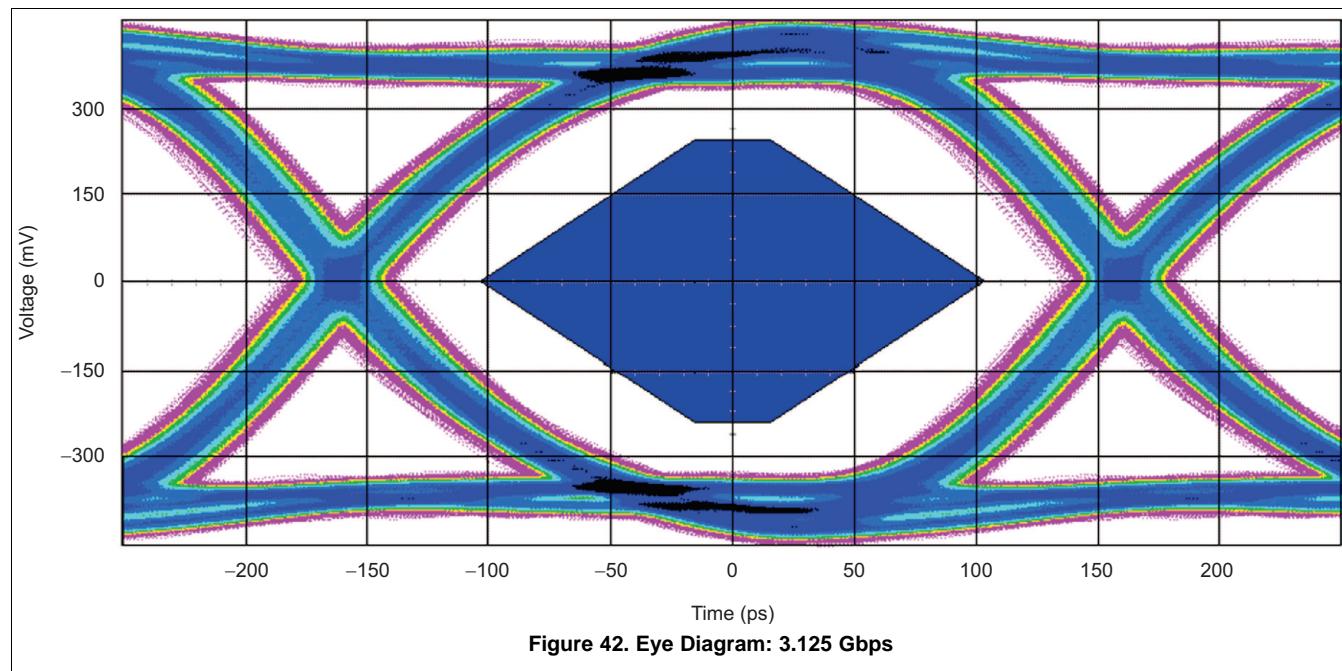

Figure 40. JESD Frame Assembly

Table 4. Configuring 40x Mode

ADDRESS	DATA
2Bh	01h
30h	11h


9.3.5.4 Digital Outputs

The ADC32J2x JESD204B transmitter uses differential CML output drivers. The CML output current is programmable from 5 mA to 20 mA using SPI register settings. The output driver expects to drive a differential 100- Ω load impedance and the termination resistors should be placed as close to the receiver inputs as possible to avoid unwanted reflections and signal distortion. Because the JESD204B employs 8b, 10b encoding, the output data stream is dc-balanced and ac-coupling can be used to avoid the need to match up common-mode voltages between the transmitter and receivers. The termination resistors should be connected to the termination voltage as shown in [Figure 41](#).

Figure 41. CML Output Connections

Figure 42 shows the data eye measurements of the device JESD204B transmitter against the JESD204B transmitter mask at 3.125 Gbps (156.25 MSPS, 20x mode), respectively.

9.4 Device Functional Modes

9.4.1 Digital Gain

The input full-scale amplitude can be selected between 1 V_{PP} to 2 V_{PP} (default is 2 V_{PP}) by choosing the appropriate digital gain setting via an SPI register write. Digital gain provides an option to trade-off SNR for SFDR performance. A larger input full-scale increases SNR performance (2 V_{PP} is recommended for maximum SNR) while reduced input swing typically results in better SFDR performance. Table 5 lists the available digital gain settings.

Table 5. Digital Gain vs Full-Scale Amplitude

DIGITAL GAIN (dB)	MAX INPUT VOLTAGE (V_{PP})
0	2.0
0.5	1.89
1	1.78
1.5	1.68
2	1.59
2.5	1.50
3	1.42
3.5	1.34
4	1.26
4.5	1.19
5	1.12
5.5	1.06
6	1.00

9.4.2 Overage Indication

The ADC32J2x provides two different overrange indications. The normal OVR (default) is triggered if the final 12-bit data output exceeds the maximum code value. The fast OVR is triggered if the input voltage exceeds the programmable overrange threshold and is presented after just nine clock cycles, thus enabling a quicker reaction to an overrange event. By default, the normal overrange indication is output on the OVR_x pins (where x is A, B, C, or D). The fast OVR indication can be presented on the overrange pins instead by using the SPI register map.

9.5 Programming

The ADC32J2x can be configured using a serial programming interface, as described in this section.

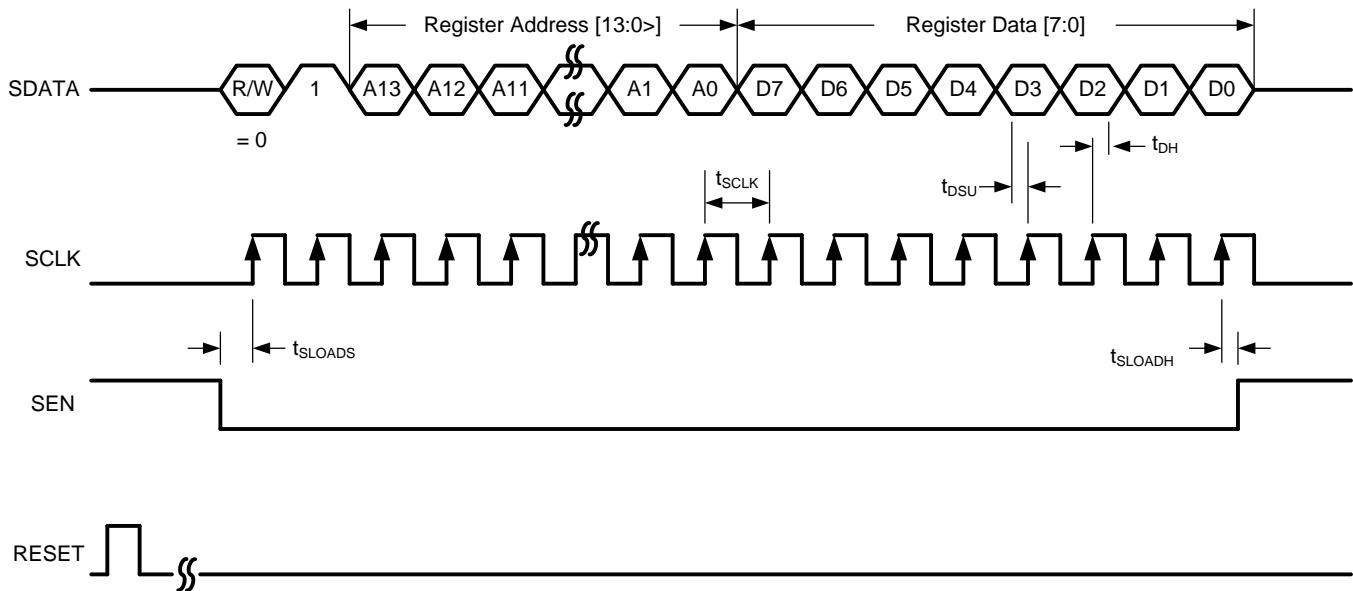
9.5.1 Serial Interface

The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50% SCLK duty cycle.

9.5.1.1 Register Initialization

After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in [Figure 43](#). If required, the serial interface registers can be cleared during operation either:

1. Through a hardware reset, or
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h) high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low.


9.5.1.1.1 Serial Register Write

The device internal register can be programmed with these steps:

1. Drive the SEN pin low,
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),
3. Set bit A14 in the address field to 1,
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be written, and
5. Write the 8-bit data that are latched in on the SCLK rising edge.

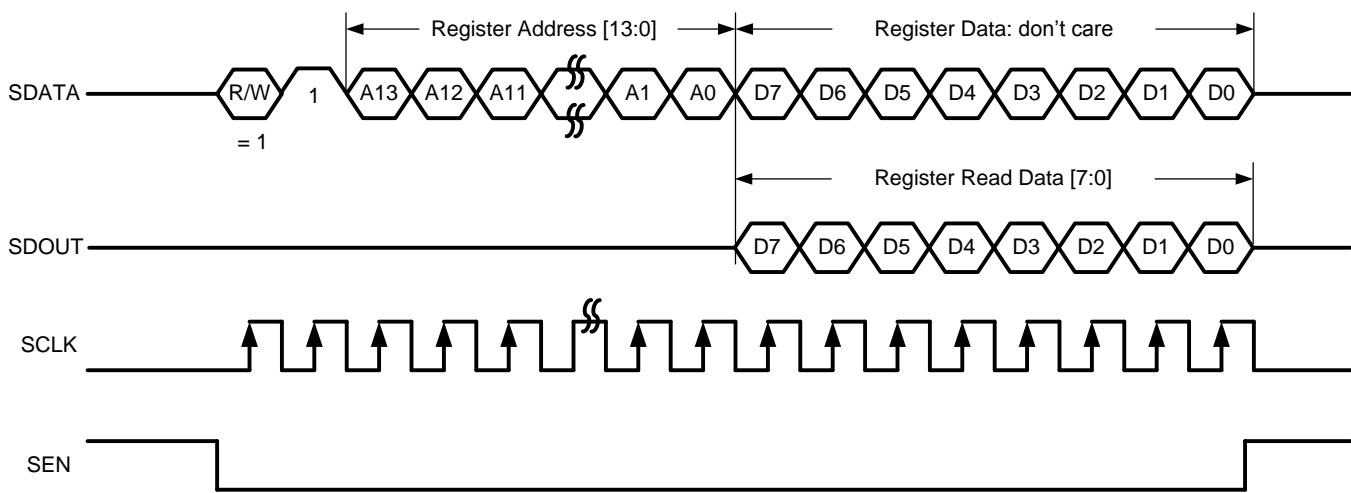
Programming (continued)

Figure 43 and Table 6 show the timing requirements for the serial register write operation.

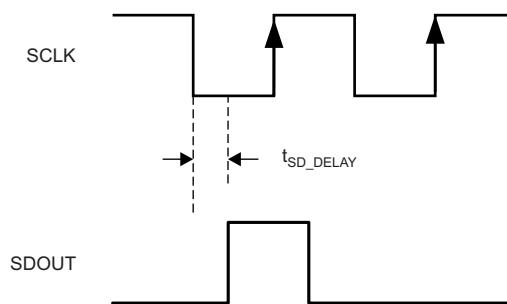
Figure 43. Serial Register Write Timing Diagram

Table 6. Serial Interface Timing⁽¹⁾

PARAMETER	MIN	TYP	MAX	UNIT
f_{SCLK}	> dc		20	MHz
t_{SLOADS}	25			ns
t_{SLOADH}	25			ns
t_{DSU}	25			ns
t_{DH}	25			ns


(1) Typical values are at 25°C, full temperature range is from $T_{MIN} = -40^{\circ}\text{C}$ to $T_{MAX} = 85^{\circ}\text{C}$, and $AVDD = DVDD = 1.8\text{ V}$, unless otherwise noted.

9.5.1.1.2 Serial Register Readout


The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin. This readback mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the ADC. Given below is the procedure to read contents of serial registers:

1. Drive the SEN pin low.
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.
3. Set bit A14 in the address field to 1.
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.
6. The external controller can latch the contents at the SCLK rising edge.
7. To enable register writes, reset the R/W register bit to 0.

When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the SDOUT pin must float. [Figure 44](#) shows a timing diagram of the serial register read operation. Data appear on the SDOUT pin at the SCLK falling edge with an approximate delay (t_{SD_DELAY}) of 20 ns, as shown in [Figure 45](#).

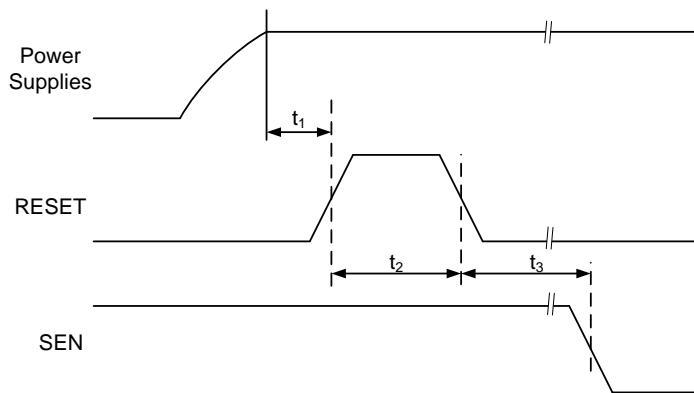

Figure 44. Serial Register Read Timing Diagram

Figure 45. SDOUT Timing Diagram

9.5.2 Register Initialization

After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a high pulse on the RESET pin, as shown in [Figure 46](#) and [Table 7](#).

Figure 46. Initialization of Serial Registers after Power-Up

Table 7. Power-Up Timing

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
t_1	Power-on delay Delay from power up to active high RESET pulse	1			ms
t_2	Reset pulse width Active high RESET pulse width	10		1000	ns
t_3	Register write delay Delay from RESET disable to SEN active	100			ns

If required, the serial interface registers can be cleared during operation either:

1. Through hardware reset, or
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h) high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low. In this case, the RESET pin is kept low.

9.5.3 Start-Up Sequence

After power-up, the sequence described in [Table 8](#) can be used to set up the ADC32J2x for basic operation.

Table 8. Start-Up Settings

STEP	DESCRIPTION	REGISTER ADDRESS AND DATA
1	Supply all supply voltages. There is no required power supply sequence for AVDD and DVDD	—
2	Pulse hardware reset (low to high to low) on pin 24	—
3	Optional configure LMFS of JESD204B interface to LMFS = 1241 (default is LMFS = 2221)	Address 2Bh, data 01h Address 30h, data 11h
4	Pulse SYNCb from low to high to transmit data from k28.5 sync mode	—

9.6 Register Maps

Table 9. Register Map Summary

REGISTER ADDRESS	REGISTER DATA							
A[13:0] (Hex)	7	6	5	4	3	2	1	0
01	0	0	DIS DITHER CHA		DIS DITHER CHB		0	0
03	0	0	0	0	0	0	CHA GAINEN	0
04	0	0	0	0	0	0	CHB GAINEN	0
06	0	0	0	0	0	0	TEST PATTERN EN	RESET
07	0	0	0	SPECIAL MODE1 CHA			EN FOVR	0
08	0	0	0	SPECIAL MODE1 CHB			0	0
09	0	0	0	0	0	0	ALIGN TEST PATTERN	DATA FORMAT
0A	0	0	0	0	CHA TEST PATTERN			
0B	CHB TEST PATTERN				0	0	0	0
0C	0	0	0	0	CHA DIGITAL GAIN			
0D	CHB DIGITAL GAIN				0	0	0	0
0E	CUSTOM PATTERN [11:4]							
0F	CUSTOM PATTERN [3:0]					0	0	0
13	LOW SPEED MODE	0	0	0	0	0	0	0
15	0	CHA PDN	CHB PDN	0	STANDBY	GLOBAL PDN	0	CONFIG PDN PIN
27	CLK DIV		0	0	0	0	0	0
2A	SERDES TEST PATTERN		IDLE SYNC	TRP LAYER TESTMODE EN	FLIP ADC DATA	LANE ALIGN	FRAME ALIGN	TXMIT LINKDATA DIS
2B	0	0	0	0	0	0	CTRL K	CTRL F
2F	SCRAMBLE EN	0	0	0	0	0	0	0
30	OCTETS PER FRAME							
31	0	0	0	FRAMES PER MULTIFRAME				
34	SUBCLASSV			0	0	0	0	0
3A	SYNC REG	SYNC REQ EN	0	0	OUTPUT CURRENT SEL			
3B	LINK LAYER TESTMODE SEL [2:0]			LINK LAYER RPAT	0	PULSE DET MODES		
3C	FORCE LMFC COUNT	LMFC COUNT INIT					RELEASE ILANE SEQ	

Register Maps (continued)

Table 9. Register Map Summary (continued)

REGISTER ADDRESS	REGISTER DATA								
	7	6	5	4	3	2	1	0	
422	0	0	0	0	0	0	SPECIAL MODE2 CHA	0	
434	0	0	DIS DITH CHA	0	DIS DITH CHA	0	0	0	
522	0	0	0	0	0	0	SPECIAL MODE2 CHB	0	
534	0	0	DIS DITH CHB	0	DIS DITH CHB	0	0	0	

9.6.1 Serial Register Description

Figure 47. Register 01h

7	6	5	4	3	2	1	0
0	0	DIS DITHER CHA		DIS DITHER CHB		0	0

Table 10. Register 01h Description

Name	Description
Bits 7:6	Must write 0
Bits 5:4	DIS DITHER CHA
	These bits enable or disables the on-chip dither. Control these bits with bits 5 and 3 of register 434h. 00 = Dither enabled 11 = Dither disabled. Improves SNR by 0.2 dB for input frequencies up to 170 MHz.
Bits 3:2	DIS DITHER CHB
	These bits enable or disables the on-chip dither. Control these bits with bits 5 and 3 of register 534h. 00 = Dither enabled 11 = Dither disabled. Improves SNR by 0.2 dB for input frequencies up to 170 MHz.
Bits 1:0	Must write 0

Figure 48. Register 03h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	CHA GAINEN	0

Table 11. Register 03h Description

Name	Description
Bits 7:2	Must write 0
Bit 1	CHA GAINEN: Digital gain enable bit for channel A
	0 = Digital gain disabled 1 = Digital gain enabled
Bit 0	Must write 0

Figure 49. Register 04h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	CHB GAINEN	0

Table 12. Register 04h Description

Name	Description
Bits 7:2	Must write 0
Bit 1	CHB GAINEN: Digital gain enable bit for channel B
	0 = Digital gain disabled 1 = Digital gain enabled
Bit 0	Must write 0

Figure 50. Register 06h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	TEST PATTERN EN	RESET

Table 13. Register 06h Description

Name	Description
Bits 7:2	Must write 0
Bit 1	TEST PATTERN EN
	This bit enables the test pattern selection for the digital outputs. 0 = Normal operation 1 = Test pattern output enabled
Bit 0	RESET: Software reset applied
	This bit resets all internal registers to the default values and self-clears to 0.

Figure 51. Register 07h

7	6	5	4	3	2	1	0
0	0	0		SPECIAL MODE1 CHA		EN FOVR	0

Table 14. Register 07h Description

Name	Description
Bits 7:5	Must write 0
Bits 4:2	SPECIAL MODE1 CHA
	010 = For frequencies < 120 MHz 111 = For frequencies > 120 MHz
Bit 1	EN FOVR
	0 = Normal OVR on OVRx pins 1 = Enable fast OVR on OVRx pins
Bit 0	Must write 0

Figure 52. Register 08h

7	6	5	4	3	2	1	0
0	0	0		SPECIAL MODE1 CHB		0	0

Table 15. Register 08h Description

Name	Description
Bits 7:5	Must write 0
Bits 4:2	SPECIAL MODE1 CHB
	010 = For frequencies < 120 MHz 111 = For frequencies > 120 MHz
Bits 1:0	Must write 0

Figure 53. Register 09h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	ALIGN TEST PATTERN	DATA FORMAT

Table 16. Register 09h Description

Name	Description
Bits 7:2	Must write 0
Bit 1	ALIGN TEST PATTERN This bit aligns test patterns across the outputs of the four channels. 0 = Test patterns of four channels are free running 1 = Test patterns of all 4 channels are aligned
Bit 0	DATA FORMAT This bit sets the digital output data format. 0 = Twos complement 1 = Offset binary

Figure 54. Register 0Ah

7	6	5	4	3	2	1	0
0	0	0	0			CHA TEST PATTERN	

Table 17. Register 0Ah Description

Name	Description
Bits 7:4	Must write 0
Bits 3:0	CHA TEST PATTERN These bits control the test pattern for channel A after the TEST PATTERN EN bit is set. 0000 = Normal operation 0001 = All 0's 0010 = All 1's 0011 = Toggle pattern: data alternate between 101010101010 and 010101010101. 0100 = Digital ramp: data increments by 1 LSB every clock cycle from code 0 to 4095. 0101 = Custom pattern: output data are the same as programmed by the CUSTOM PATTERN register bits. 0110 = Deskew pattern: data are AAAh. 1000 = PRBS pattern: data are a sequence of pseudo random numbers. 1001 = 8-point sine wave: data are a repetitive sequence of the following eight numbers that form a sine-wave: 0, 599, 2048, 3496, 4095, 3496, 2048, 599. Others = Do not use

Figure 55. Register 0Bh

7	6	5	4	3	2	1	0
CHB TEST PATTERN				0	0	0	0

Table 18. Register 0Bh Description

Name	Description
Bits 7:4	CHB TEST PATTERN These bits control the test pattern for channel B after the TEST PATTERN EN bit is set. 0000 = Normal operation 0001 = All 0's 0010 = All 1's 0011 = Toggle pattern: data alternate between 10101010101010 and 01010101010101. 0100 = Digital ramp: data increment by 1 LSB every clock cycle from code 0 to 4095. 0101 = Custom pattern: output data are the same as programmed by the CUSTOM PATTERN register bits. 0110 = Deskew pattern: data are AAAh. 1000 = PRBS pattern: data are a sequence of pseudo random numbers. 1001 = 8-point sine wave: data are a repetitive sequence of the following eight numbers that form a sine-wave: 0, 599, 2048, 3496, 4095, 3496, 2048, 599. Others = Do not use
Bits 3:0	Must write 0

Figure 56. Register 0Ch

7	6	5	4	3	2	1	0
0	0	0	0				CHA DIGITAL GAIN

Table 19. Register 0Ch Description

Name	Description
Bits 7:4	Must write 0
Bits 3:0	CHA DIGITAL GAIN
	These bits set the digital gain for individual channels. For register settings see Table 20.

Table 20. Channel Digital Gain

REGISTER VALUE	DIGITAL GAIN (dB)	MAXIMUM INPUT VOLTAGE (V _{PP})
0000	0	2.0
0001	0.5	1.89
0010	1	1.78
0011	1.5	1.68
0100	2	1.59
0101	2.5	1.50
0110	3	1.42
0111	3.5	1.34
1000	4	1.26
1001	4.5	1.19
1010	5	1.12
1011	5.5	1.06
1100	6	1.00

Figure 57. Register 0Dh

7	6	5	4	3	2	1	0
				CHB DIGITAL GAIN	0	0	0

Table 21. Register 0Dh Description

Name	Description
Bits 7:4	CHB DIGITAL GAIN
	These bits set the digital gain for the individual channels. For register settings see Table 20 .
Bits 3:0	Must write 0

Figure 58. Register 0Eh

7	6	5	4	3	2	1	0
				CUSTOM PATTERN[11:4]			

Table 22. Register 0Eh Description

Name	Description
Bits 7:0	CUSTOM PATTERN[11:4]
	These bits set the custom pattern (11:4) for all channels.

Figure 59. Register 0Fh

7	6	5	4	3	2	1	0
				CUSTOM PATTERN[3:0]		0	0

Table 23. Register 0Fh Description

Name	Description
Bits 7:2	CUSTOM PATTERN[3:0]
	These bits set the custom pattern (3:0) for all channels.
Bits 1:0	Must write 0

Figure 60. Register 13h

7	6	5	4	3	2	1	0
LOW SPEED MODE	0	0	0	0	0	0	0

Table 24. Register 13h Description

Name	Description
Bit 7	LOW SPEED MODE
	Use this bit for sampling frequencies < 25 MSPS. 0 = Normal operation 1 = Low-speed mode is enabled
Bits 6:0	Must write 0

Figure 61. Register 15h

7	6	5	4	3	2	1	0
0	CHA PDN	CHB PDN	0	STANDBY	GLOBAL PDN	0	PDN PIN DISABLE

Table 25. Register 15h Description

Name	Description
Bit 7	Must write 0
Bit 6	CHA PDN: Power-down channel A 0 = Normal operation 1 = Power-down channel A if PDN PIN DISABLE register bit is set
Bit 5	CHB PDN: Power-down channel B 0 = Normal operation 1 = Power-down channel B if PDN PIN DISABLE register bit is set
Bit 4	Must write 0
Bit 3	STANDBY: ADCs of both channels enter standby 0 = Normal operation 1 = Standby
Bit 2	GLOBAL PDN: Global power-down 0 = Normal operation 1 = Global power-down
Bit 1	Must write 0
Bit 0	PDN PINDISABLE This bit disables the power-down control from the pin. 0 = Normal operation 1 = Power-down pin is disabled, register settings should be used for power-down operations

Figure 62. Register 27h

7	6	5	4	3	2	1	0
CLK DIV	0	0	0	0	0	0	0

Table 26. Register 27h Description

Name	Description
Bits 7:6	CLK DIV: Internal clock divider for the input sample clock 00 = Clock divider bypassed 01 = Divide-by-1 10 = Divide-by-2 11 = Divide-by-4
Bits 5:0	Must write 0

Figure 63. Register 2Ah

7	6	5	4	3	2	1	0
SERDES TEST PATTERN	IDLE SYNC	TRP LAYER TESTMODE EN	FLIP ADC DATA	LANE ALIGN	FRAME ALIGN	TX LINK CONFIG DATA DIS	

Table 27. Register 2Ah Description

Name	Description
Bits 7:6	SERDES TEST PATTERN
	00 = Normal operation 01 = Outputs clock pattern: output is 10101010 pattern 10 = Encoded pattern: output is 111111100000000 11 = PRBS sequence: output is $2^{15} - 1$
Bit 5	IDLE SYNC
	This bit sets the output pattern when SYNC is high. 0 = Sync code is k28.5 (0xBCBC) 1 = Sync code is 0xBC50
Bit 4	TRP LAYER TESTMODE EN
	This bit generates the long transport layer test pattern mode according to 5.1.6.3 clause of the JESD204B specification. 0 = Test mode disabled 1 = Test mode enabled
Bit 3	FLIP ADC DATA
	0 = Normal operation 1 = Output data order is reversed: MSB – LSB
Bit 2	LANE ALIGN
	This bit inserts a lane alignment character (K28.3) for the receiver to align to the lane boundary per section 5.3.3.5 of the JESD204B specification. 0 = Normal operation 1 = Inserts lane alignment characters
Bit 1	FRAME ALIGN
	This bit inserts a frame alignment character (K28.7) for the receiver to align to the lane boundary per section 5.3.3.4 of the JESD204B specification. 0 = Normal operation 1 = Inserts frame alignment characters
Bit 0	TX LINK CONFIG DATA DIS
	This bit disables sending the initial link alignment (ILA) sequence when SYNC is de-asserted. 0 = Normal operation 1 = ILA disabled

Figure 64. Register 2Bh

7	6	5	4	3	2	1	0
0	0	0	0	0	0	CTRL K	CTRL F

Table 28. Register 2Bh Description

Name	Description
Bit 7:2	Must write 0
Bit 1	CTRL K: Enable bit for number of frames per multiframe 0 = Default is 9 (20x mode) frames per multiframe 1 = Frames per multiframe can be set in register 31h
Bit 0	CTRL F: Enable bit for number of octets per frame 0 = 20x mode using one lane per ADC (default is F = 2) 1 = Octets per frame can be specified in register 30h

Figure 65. Register 2Fh

7	6	5	4	3	2	1	0
SCRAMBLE EN	0	0	0	0	0	0	0

Table 29. Register 2Fh Description

Name	Description
Bit 7	SCRAMBLE EN: Scramble enable bit in the JESD204B interface 0 = Scrambling disabled 1 = Scrambling enabled
Bit 6:0	Must write 0

Figure 66. Register 30h

7	6	5	4	3	2	1	0
OCTETS PER FRAME							

Table 30. Register 30h Description

Name	Description
Bits 7:0	OCTETS PER FRAME These bits set the number of octets per frame (F). 01 = 20x Serialization: two octets per frame 11 = 40x Serialization: four octets per frame

Figure 67. Register 31h

7	6	5	4	3	2	1	0			
0	0	0		FRAMES PER MULTI FRAME						

Table 31. Register 31h Description

Name	Description
Bits 7:5	Must write 0
Bits 4:0	FRAMES PER MULTI FRAME These bits set the number of frames per multiframe. After reset, the default settings for frames per multiframe are: 20x mode: K = 8 For each mode, K should not be set to a lower value.

Figure 68. Register 34h

7	6	5	4	3	2	1	0
SUBCLASS	V		0	0	0	0	0

Table 32. Register 34h Description

Name	Description
Bits 7:5	SUBCLASSV: JESD204B subclass setting
	000 = Subclass 0 backward compatibility with JESD204A 001 = Subclass 1 deterministic latency using SYSREF signal 010 = Subclass 2 deterministic latency using SYNC detection
Bits 4:0	Must write 0

Figure 69. Register 3Ah

7	6	5	4	3	2	1	0
SYNC REQ	SYNC REQ EN	0	0			OUTPUT CURRENT SEL	

Table 33. Register 3Ah Description

Name	Description
Bit 7	SYNC REQ
	<p>This bit generates a synchronization request only when the SYNC REQ EN register bit is set.</p> <p>0 = Normal operation 1 = Generates sync request</p>
Bit 6	SYNC REQ EN
	<p>0 = Sync request is made with the SYNC_P~, SYNC_M~ pins 1 = Sync request is made with the SYNC REQ register bit</p>
Bits 5:4	Must write 0
Bits 3:0	OUTPUT CURRENT SEL: JESD output buffer current selection
	0000 = 16 mA
	0001 = 15 mA
	0010 = 14 mA
	0011 = 13 mA
	0100 = 20 mA
	0101 = 19 mA
	0110 = 18 mA
	0111 = 17 mA
	1000 = 8 mA
	1001 = 7 mA
	1010 = 6 mA
	1011 = 5 mA
	1100 = 12 mA
	1101 = 11 mA
	1110 = 10 mA
	1111 = 9 mA

Figure 70. Register 3Bh

7	6	5	4	3	2	1	0
LINK LAYER TESTMODE			LINK LAYER RPAT	0	PULSE DET MODES		

Table 34. Register 3Bh Description

Name	Description
Bits 7:5	LINK LAYER TESTMODE
	These bits generate a pattern according to clause 5.3.3.8.2 of the JESD204B document. 000 = Normal ADC data 001 = D21.5 (high-frequency jitter pattern) 010 = K28.5 (mixed frequency jitter pattern) 011 = Repeat initial lane alignment (generates K28.5 character and repeat lane alignment sequences continuously) 100 = 12 octet RPAT jitter pattern
Bit 4	LINK LAYER RPAT
	This bit changes the running disparity in the modified RPAT pattern test mode (only when link layer test mode = 100). 0 = Normal operation 1 = Changes disparity
Bit 3	Must write 0
Bits 2:0	PULSE DET MODES
	These bits select different detection modes for SYSREF (subclass 1) and SYNC (subclass2). For register settings see Table 35 .

Table 35. PULSE DET MODES Register Settings

D2	D1	D0	FUNCTIONALITY
0	Don't care	0	Allow all pulses to reset input clock dividers
1	Don't care	0	Do not allow reset of analog clock dividers
Don't care	0 to 1 transition	1	Allow one pulse immediately after the 0 to1 transition to reset the divider

Figure 71. Register 3Ch

7	6	5	4	3	2	1	0
FORCE LMFC COUNT	LMFC COUNT INIT					RELEASE ILAN SEQ	

Table 36. Register 3Ch Description

Name	Description
Bits 7	FORCE LMFC COUNT
	0 = Normal operation 1 = Enables using different starting value for LMFC counter
Bits 6:2	LMFC COUNT INIT
	If SYSREF is transmitted to the digital block, the LMFC count resets to 0 and K28.5 stops transmitting when the LMFC count reaches 31. The initial value that the LMFC count resets to can be set using LMFC COUNT INIT. In this manner, the Rx can be synchronized early because the Rx receives the LANE ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT register bit must be enabled.
Bit 1:0	RELEASE ILAN SEQ
	These bits delay the lane alignment sequence generation by 0, 1, 2, or 3 multiframe after the code group synchronization. 00 = 0 01 = 1 10 = 2 11 = 3

Figure 72. Register 422h

7	6	5	4	3	2	1	0
0	0	0	0	0	0	SPECIAL MODE2 CHA	0

Table 37. Register 422h Description

Name	Description
Bits 7:2	Must write 0
Bit 1	SPECIAL MODE2 CHA
	Always write 1 for improved HD2 performance.
Bit 0	Must write 0

Figure 73. Register 434h

7	6	5	4	3	2	1	0
0	0	DIS DITH CHA	0	DIS DITH CHA	0	0	0

Table 38. Register 434h Description

Name	Description
Bits 7:6	Must write 0
Bits 5	DIS DITH CHA
	Set this bit along with bits 5 and 4 of register 01h. 00 = Default 11 = Dither is disabled for channel A. In this mode, SNR typically improves by 0.5 dB at 70 MHz.
Bit 4	Must write 0
Bit 3	DIS DITH CHA
	Set this bit along with bits 5 and 4 of register 01h. 00 = Default 11 = Dither is disabled for channel A. In this mode, SNR typically improves by 0.5 dB at 70 MHz.
Bits 2:0	Must write 0

Figure 74. Register 522h

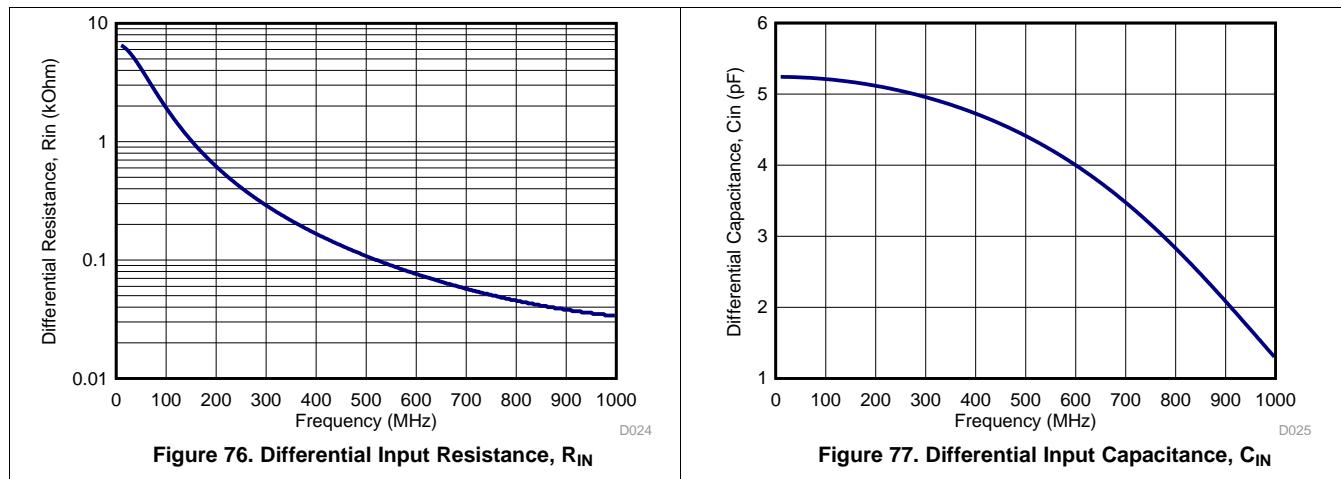
7	6	5	4	3	2	1	0
0	0	0	0	0	0	SPECIAL MODE2 CHB	0

Table 39. Register 522h Description

Name	Description
Bits 7:2 and	Must write 0
Bit 1	SPECIAL MODE2 CHB
	Always write 1 for better HD2 performance
Bit 0	Must write 0

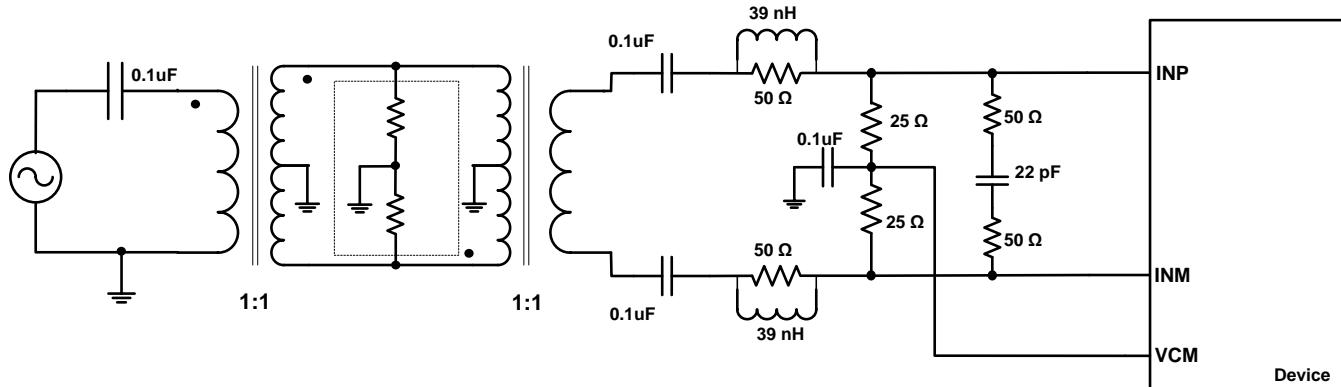
Figure 75. Register 534

7	6	5	4	3	2	1	0
0	0	DIS DITH CHB	0	DIS DITH CHB	0	0	0


Table 40. Register Description

Name	Description
Bits 7:6	Must write 0
Bits 5	DIS DITH CHB
	Set this bit along with bits 3 and 2 of register 01h. 00 = Default 11 = Dither is disabled for channel B. In this mode, SNR typically improves by 0.5 dB at 70 MHz.
Bit 4	Must write 0
Bit 3	DIS DITH CHB
	Set this bit along with bits 3 and 2 of register 01h. 00 = Default 11 = Dither is disabled for channel B. In this mode, SNR typically improves by 0.5 dB at 70 MHz.
	Must write 0

10 Applications and Implementation


10.1 Application Information

Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC inputs. While designing the dc driving circuits, the ADC input impedance must be considered. [Figure 76](#) and [Figure 77](#) show the impedance ($Z_{in} = R_{in} \parallel C_{in}$) across the ADC input pins.

10.2 Typical Applications

10.2.1 Driving Circuit Design: Low Input Frequencies

Figure 78. Driving Circuit for Low Input Frequencies

10.2.1.1 Design Requirements

For optimum performance, the analog inputs must be driven differentially. An optional 5- Ω to 15- Ω resistor in series with each input pin can be kept to damp out ringing caused by package parasitics. The drive circuit may have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched impedance to the source.

10.2.1.2 Detailed Design Procedure

A typical application using two back-to-back coupled transformers is illustrated in [Figure 78](#). The circuit is optimized for low input frequencies. An external R-C-R filter using 50- Ω resistors and a 22-pF capacitor is used. With the series inductor (39 nH), this combination helps absorb the sampling glitches.

Typical Applications (continued)

10.2.1.3 Application Curves

Figure 79 shows the performance obtained by using the circuit shown in Figure 78.

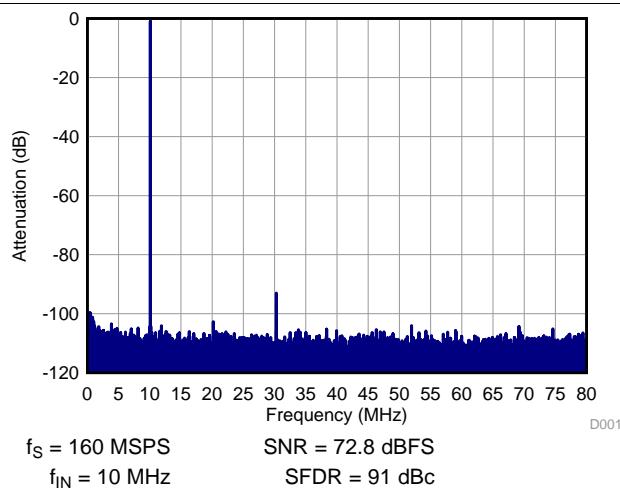


Figure 79. Performance FFT at 10 MHz (Low Input Frequency)

Typical Applications (continued)

10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz

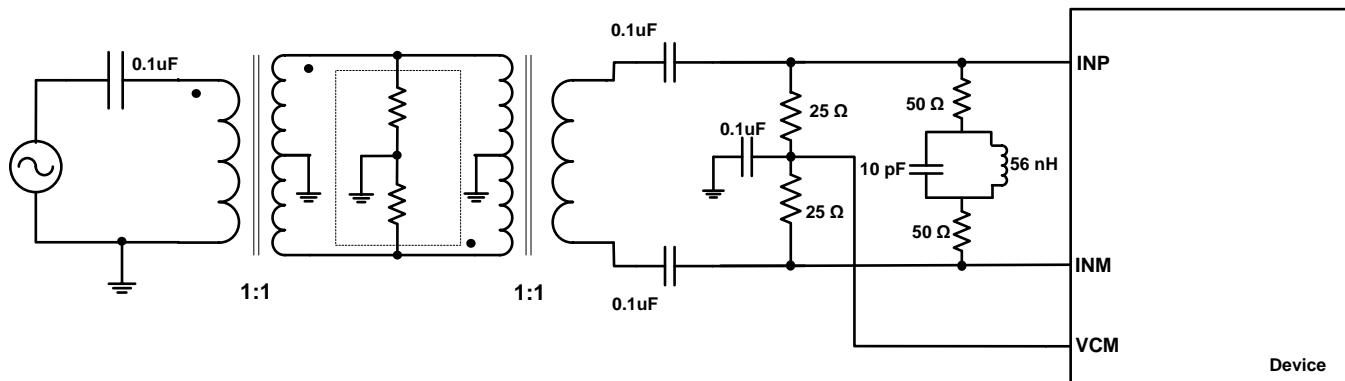
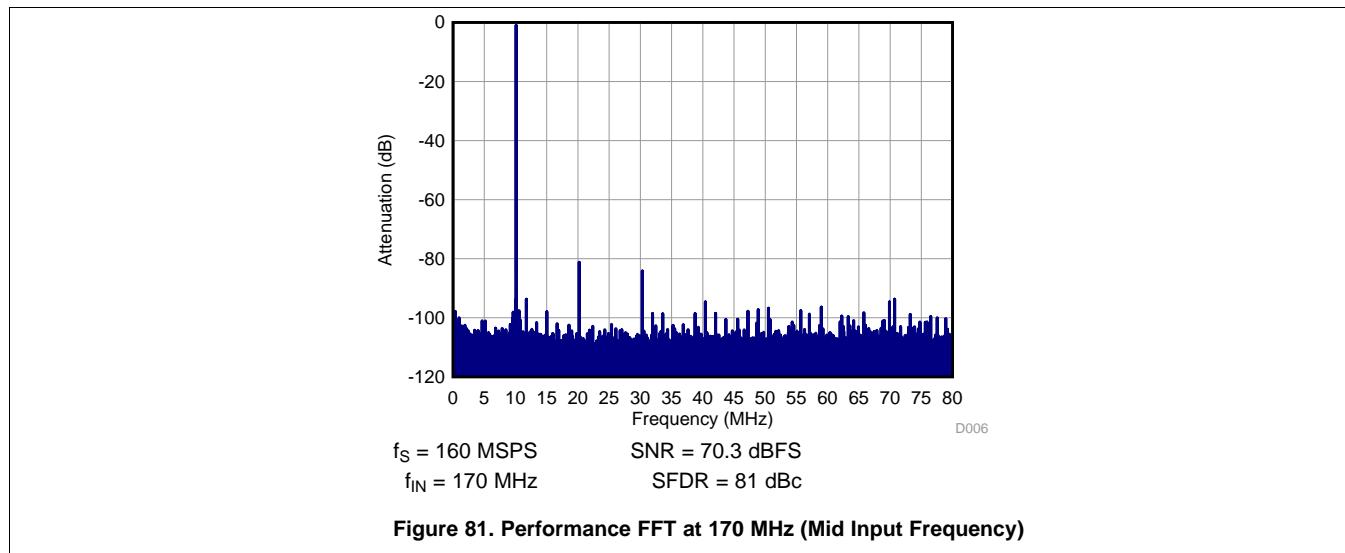


Figure 80. Driving Circuit for Mid-Range Input Frequencies ($100 \text{ MHz} < f_{IN} < 230 \text{ MHz}$)

10.2.2.1 Design Requirements


See the [Design Requirements](#) section for further details.

10.2.2.2 Detailed Design Procedure

When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize performance, as shown in [Figure 80](#).

10.2.2.3 Application Curve

[Figure 81](#) shows the performance obtained by using the circuit shown in [Figure 80](#).

Typical Applications (continued)

10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz

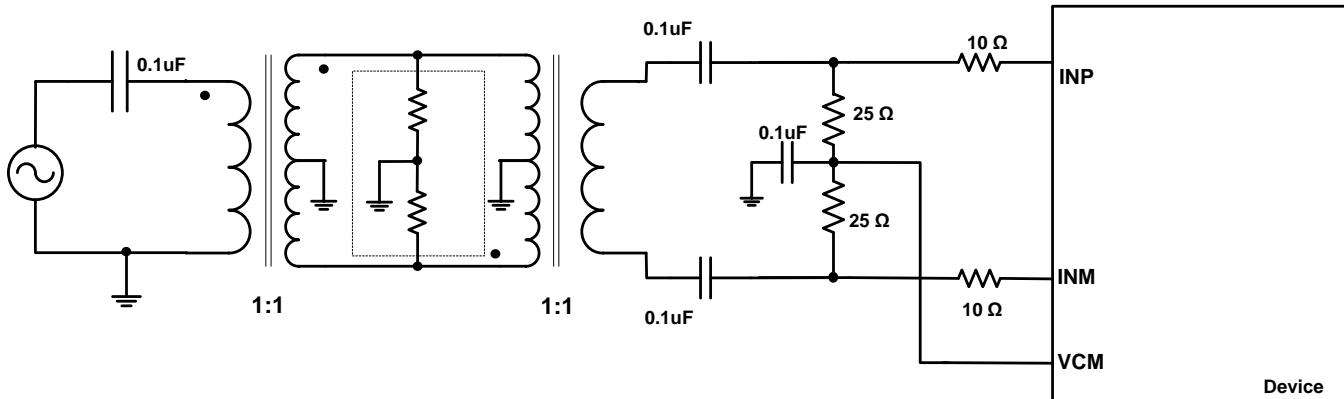


Figure 82. Driving Circuit for High Input Frequencies ($f_{IN} > 230$ MHz)

10.2.3.1 Design Requirements

See the [Design Requirements](#) section for further details.

10.2.3.2 Detailed Design Procedure

For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant improvement in performance. However, a series resistance of $10\ \Omega$ can be used as shown in [Figure 82](#).

10.2.3.3 Application Curve

[Figure 83](#) shows the performance obtained by using the circuit shown in [Figure 82](#).

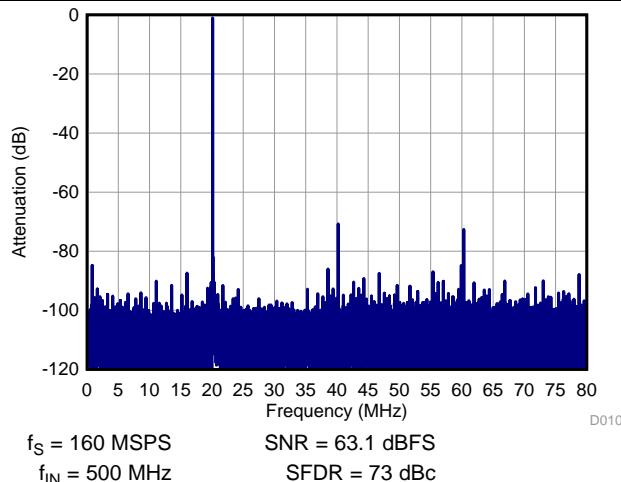


Figure 83. Performance FFT at 500 MHz (High Input Frequency)

11 Power-Supply Recommendations

The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply requirements during device power-up. AVDD and DVDD can power up in any order.

12 Layout

12.1 Layout Guidelines

The ADC32J2x EVM layout can be used as a reference layout to obtain the best performance. A layout diagram of the EVM top layer is provided in [Figure 84](#). Some important points to remember while laying out the board are:

1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the package level. To minimize crosstalk onboard, the analog inputs should exit the pin out in opposite directions, as shown in the reference layout of [Figure 84](#) as much as possible.
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to minimize coupling between them. This configuration is also maintained on the reference layout of [Figure 84](#) as much as possible.
3. Digital outputs should be kept away from the analog inputs. When these digital outputs exit the pin out, the digital output traces should not be kept parallel to the analog input traces because this configuration may result in coupling from digital outputs to analog inputs and degrade performance. All digital output traces to the receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] should be matched in length to avoid skew among outputs.
4. At each power-supply pin (AVDD and DVDD), a 0.1- μ F decoupling capacitor should be kept close to the device. A separate decoupling capacitor group consisting of a parallel combination of 10- μ F, 1- μ F, and 0.1- μ F capacitors can be kept close to the supply source.

12.2 Layout Example

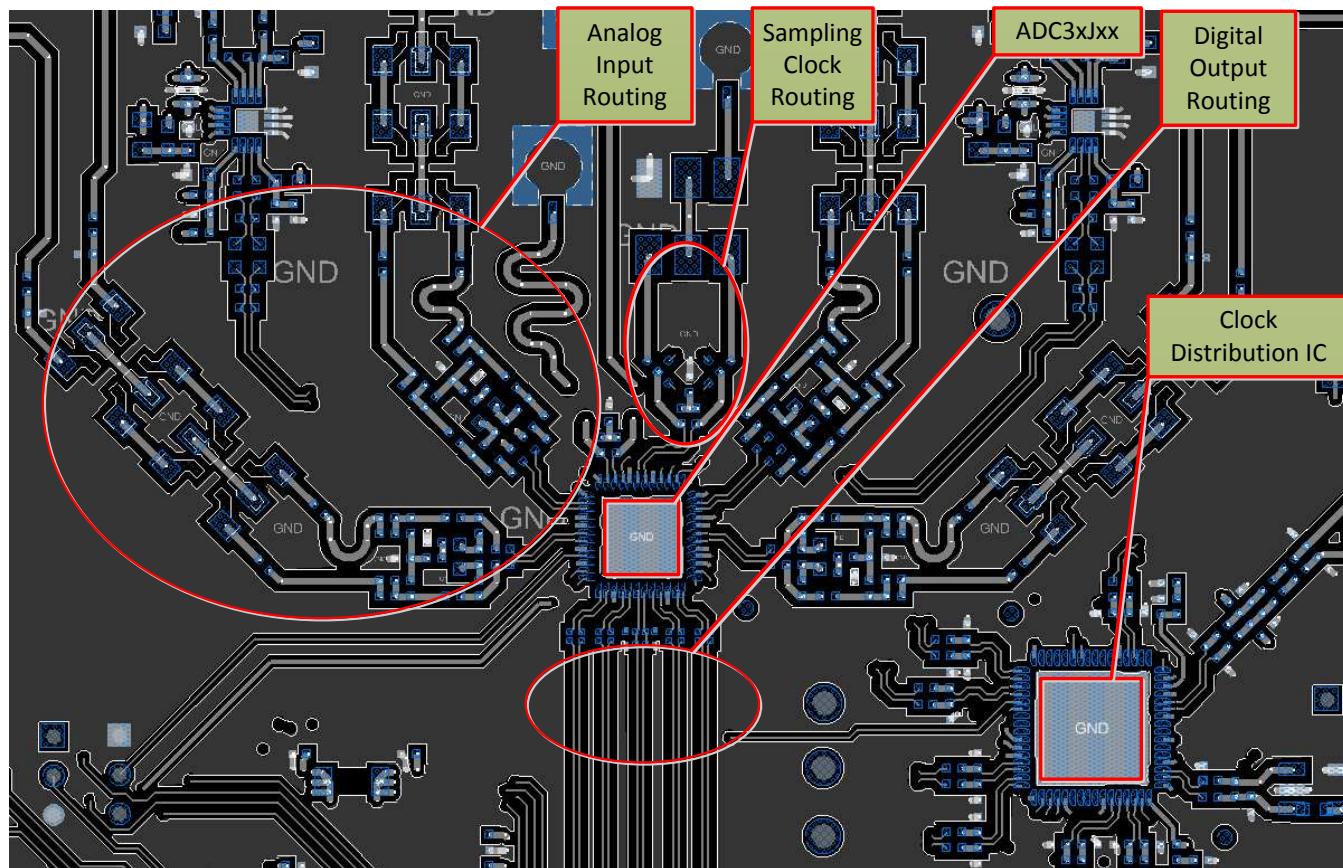


Figure 84. Typical Layout of the ADC32J2x Board

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 41. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
ADC32J22	Click here				
ADC32J23	Click here				
ADC32J24	Click here				
ADC32J25	Click here				

13.2 Trademarks

PowerPAD is a trademark of Texas Instruments, Inc.

All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ADC32J22IRGZR	PREVIEW	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J22	
ADC32J22IRGZT	PREVIEW	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J22	
ADC32J23IRGZR	PREVIEW	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J23	
ADC32J23IRGZT	PREVIEW	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J23	
ADC32J24IRGZR	PREVIEW	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J24	
ADC32J24IRGZT	PREVIEW	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J24	
ADC32J25IRGZR	PREVIEW	VQFN	RGZ	48	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J25	
ADC32J25IRGZT	PREVIEW	VQFN	RGZ	48	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	AZ32J25	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

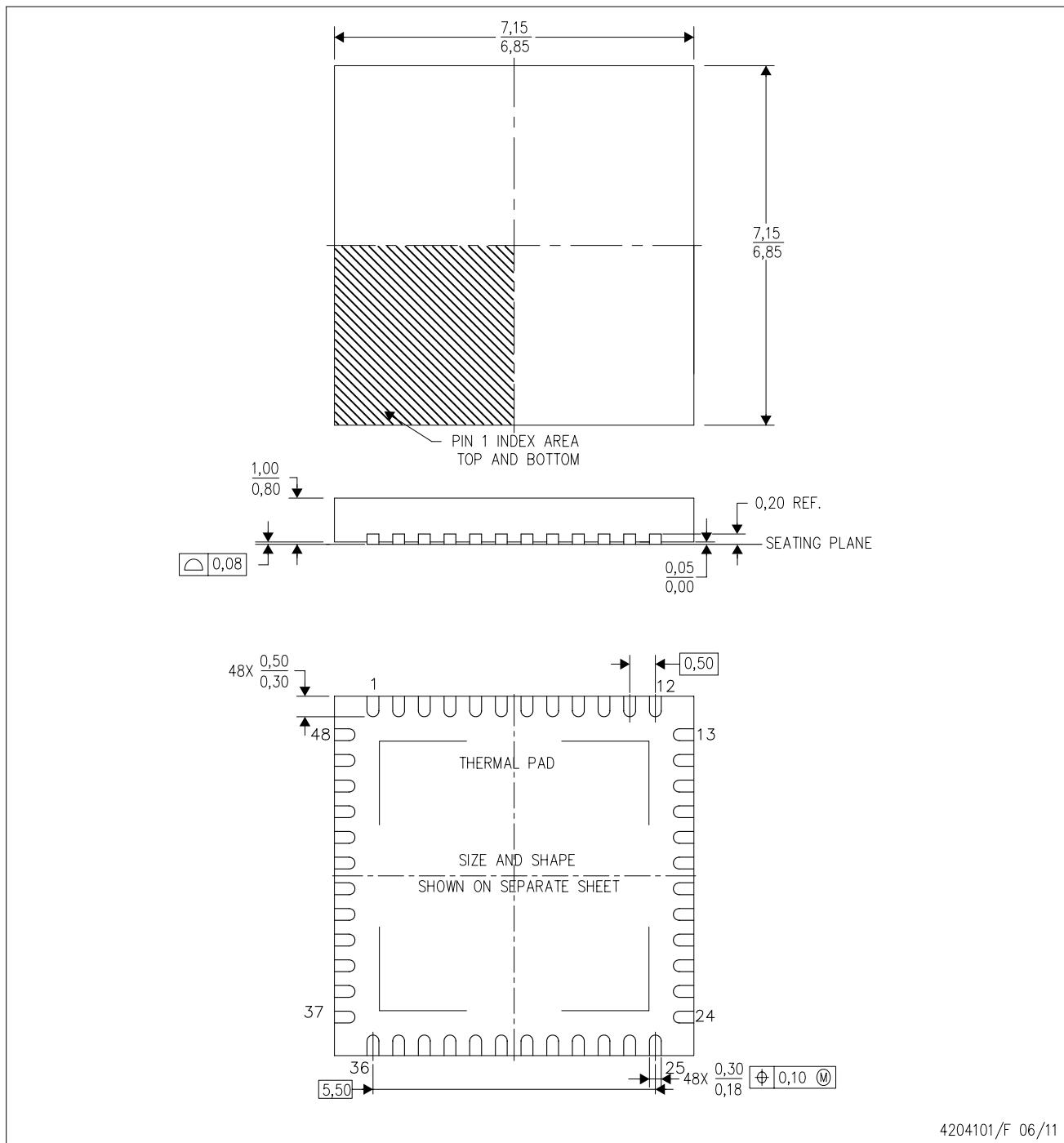
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RGZ (S-PVQFN-N48)

PLASTIC QUAD FLATPACK NO-LEAD

4204101/F 06/11

NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- Quad Flatpack, No-leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com