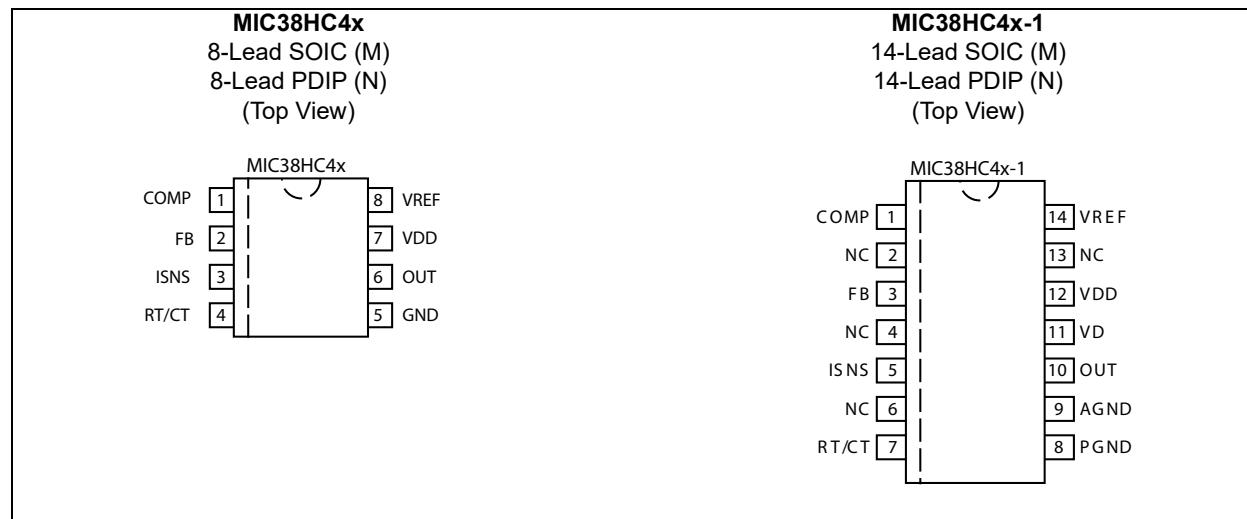
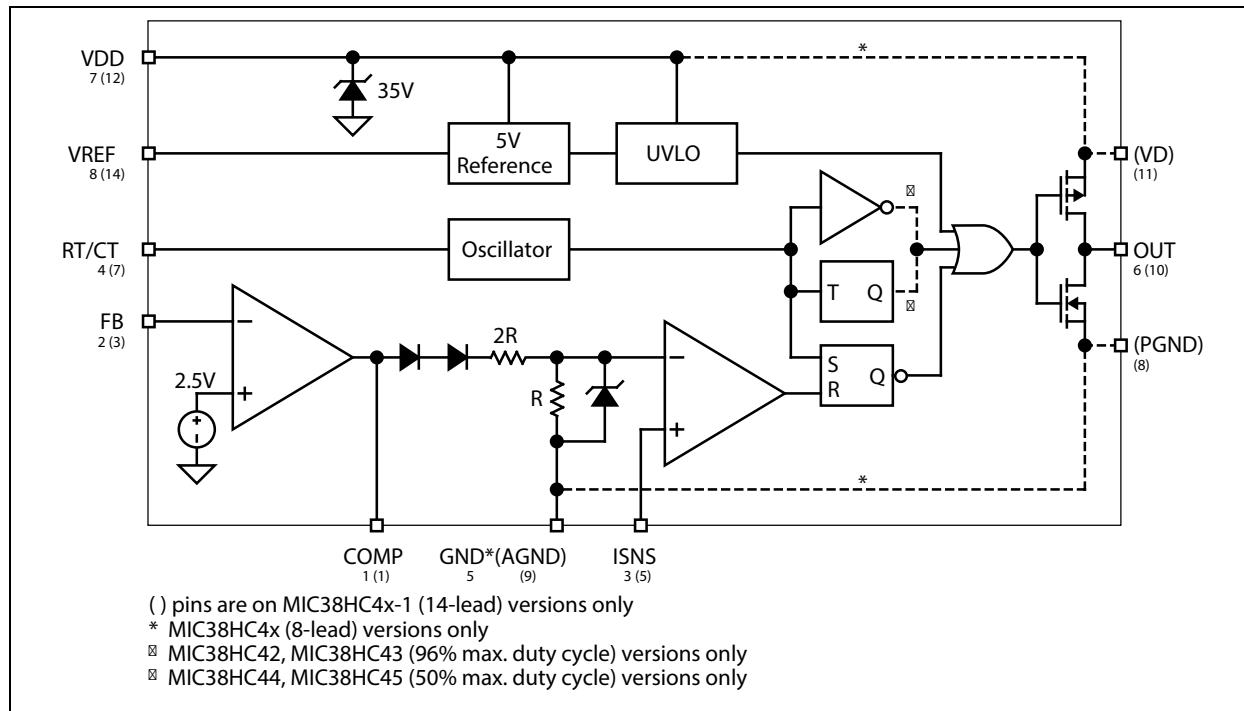


BiCMOS 1A Current-Mode PWM Controllers


Features

- Fast 20 ns Output Rise and 15 ns Output Fall Times
- -40°C to $+85^{\circ}\text{C}$ Temperature Range Exceeds UC284x Specifications
- High-Performance, Low-Power BiCMOS Process
- Ultra-Low Start-Up Current (50 μA Typical)
- Low Operating Current (4 mA Typical)
- High Output Drive (1A Peak Current, HC Version)
- CMOS Outputs with Rail-to-Rail Swing
- Current-Mode Operation up to 500 kHz
- Trimmed 5V Bandgap Reference
- Pin-for-Pin Compatible with UC3842/3843/3844/3845(A)
- Trimmed Oscillator Discharge Current
- UVLO with Hysteresis
- Low Cross-Conduction Currents

Applications


- Current-Mode, Offline, Switched-Mode Power Supplies
- Current-Mode, DC-to-DC Converters
- Step-Down "Buck" Regulators
- Step-Up "Boost" Regulators
- Flyback, Isolated Regulators
- Forward Converters
- Synchronous FET Converters

Package Types

MIC38HC42/3/4/5

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Zener Current (V_{DD})	30 mA
Operation at $\geq 18V$ may require special precautions (Note 1).		
Supply Input Voltage (V_{DD}) (Note 1)	+20V
Switch Supply Voltage (V_D)	+20V
Current Sense Voltage (V_{ISNS})	-0.3V to +5.5V
Feedback Voltage (V_{FB})	-0.3V to +5.5V
Output Current (I_{OUT})	1A

† **Notice:** Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: On 8-lead versions, 20V is the maximum input on Pin 7 because this is also the supply pin for the output stage. On 14-lead versions, 40V is the maximum for Pin 12 and 20V is the maximum for Pin 11.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{DD} = 15V$, Note 1; $R_T = 9.09\text{ k}\Omega$; $C_T = 3.3\text{ nF}$; $-40^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$; unless noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Reference						
Output Voltage	V_{OUT}	4.90	5.00	5.10	V	$T_A = 25^\circ\text{C}$, $I_O = 1\text{ mA}$
Line Regulation	$\Delta V_{OUT}/V_{OUT}$	—	2	20	mV	$12V \leq V_{DD} \leq 18V$, $I_O = 5\text{ }\mu\text{A}$, Note 2
Load Regulation	$\Delta V_{OUT}/(V_{OUT} \times \Delta V_{IN})$	—	1	25	mV	$1\text{ mA} \leq I_O \leq 20\text{ mA}$
Temperature Stability	T_{STAB}	—	0.2	—	mV/ $^\circ\text{C}$	Note 3
Total Output Variation		4.82	—	5.18	V	Line, Load, Temp., Note 3
Output Noise Voltage		—	50	—	μV	$10\text{Hz} \leq f \leq 10\text{ kHz}$, $T_A = 25^\circ\text{C}$, Note 3
Long Term Stability		—	5	25	mV	$T_A = 125^\circ\text{C}$, 1000 hrs., Note 3
Output Short Circuit		-30	-80	-180	mA	—
Oscillator						
Initial Accuracy		49	52	55	kHz	$T_A = 25^\circ\text{C}$, Note 4
Voltage Stability	V_{STAB}	—	0.2	1.0	%	$12V \leq V_{DD} \leq 18V$, Note 2
Temperature Stability	T_{STAB}	—	0.04	—	%/ $^\circ\text{C}$	$T_{MIN} \leq T_A \leq T_{MAX}$, Note 3
Clock Ramp Reset Current	I_{CLK_RR}	7.7	8.4	9.0	mA	$T_A = 25^\circ\text{C}$, $V_{RT/CT} = 2V$
		7.2	8.4	9.5		$T_A = T_{MIN}$ to T_{MAX}
Amplitude		—	1.9	—	V_{PP}	$V_{RT/CT}$ peak to peak
Error Amp						
Input Voltage	V_{IN}	2.42	2.50	2.58	V	$V_{COMP} = 2.5V$
Input Bias Current	I_{IN}	—	-0.1	-2	μA	$V_{FB} = 5.0V$
Voltage Amplitude	A_{VOL}	65	90	—	dB	$2V \leq V_O \leq 4V$
Unity Gain Bandwidth		0.7	1.0	—	MHz	Note 3
Power Supply Rejection Ratio	PSRR	60	—	—	dB	$12V \leq V_{DD} \leq 18V$
Output Sink Current	I_{SINK}	2	14	—	mA	$V_{FB} = 2.7V$, $V_{COMP} = 1.1V$
Output Source Current	I_{SOURCE}	-0.5	-1	—	mA	$V_{FB} = 2.3V$, $V_{COMP} = 5V$
Output Voltage High	V_{OH}	5	6.8	—	V	$V_{FB} = 2.3V$, $R_L = 15\text{ k}\Omega$ to Ground

MIC38HC42/3/4/5

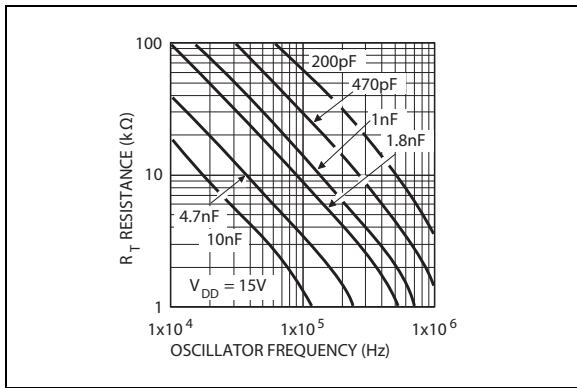
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $V_{DD} = 15V$, Note 1; $R_T = 9.09 \text{ k}\Omega$; $C_T = 3.3 \text{ nF}$; $-40^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$; unless noted.

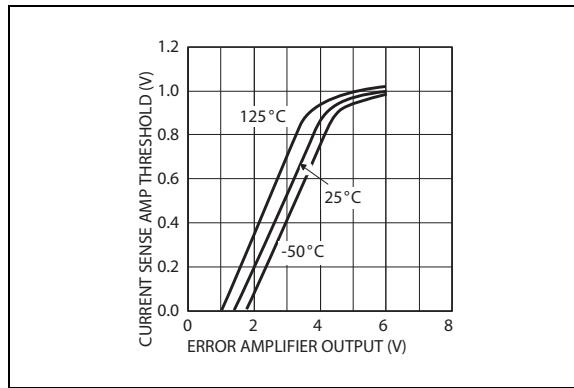
Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Output Voltage Low	V_{OL}	—	0.1	1.1	V	$V_{FB} = 2.7V$, $R_L = 15 \text{ k}\Omega$ to V_{REF}
Current Sense						
Gain		2.85	3.0	3.15	V/V	Note 5, Note 6
Maximum Threshold		0.9	1	1.1	V	$V_{COMP} = 5V$, Note 5
Power Supply Rejection Ratio	PSRR	—	70	—	dB	$12V \leq V_{DD} \leq 18V$, Note 5
Input Bias Current		—	-0.1	-2	μA	—
Delay to Output Time	t_{D-O}	—	120	250	ns	—
Output						
$R_{DS(ON)}$ High		—	10	—	Ω	$I_{SOURCE} = 200 \text{ mA}$
$R_{DS(ON)}$ Low		—	5.5	—	Ω	$I_{SINK} = 200 \text{ mA}$
Rise Time	t_R	—	20	50	ns	$T_A = 25^\circ\text{C}$, $C_L = 1 \text{ nF}$
Fall Time	t_F	—	15	40	ns	$T_A = 25^\circ\text{C}$, $C_L = 1 \text{ nF}$
Undervoltage Lockout						
Start Threshold Voltage	V_{ST_TH}	13.5	14.5	15.5	V	MIC38HC42/4
		7.8	8.4	9.0		MIC38HC43/5
Minimum Operating Voltage	$V_{OP(MIN)}$	8	9	10	V	MIC38HC42/4
		7.0	7.6	8.2		MIC38HC43/5
Pulse Width Modulator						
Maximum Duty Cycle	D_{MAX}	94	96	—	%	MIC38HC42/3
		46	50	—		MIC38HC44/5
Minimum Duty Cycle	D_{MIN}	—	—	0	%	—
Total Standby Current						
Start-Up Current	I_{SU}	—	50	200	μA	$V_{DD} = 13V$, MIC38HC42/44
		—	50	200		$V_{DD} = 7.5V$, MIC38HC43/45
Operating Supply Current		—	4.0	6.0	mA	$V_{FB} = V_{ISNS} = 0V$
Zener Voltage	V_{DD}	30	37	—	V	$I_{DD} = 25 \text{ mA}$, Note 2

Note 1: Adjust V_{DD} above the start threshold before setting at 15V.

- 2:** On 8-lead versions, 20V is the maximum input on Pin 7 because this is also the supply pin for the output stage. On 14-lead versions, 40V is the maximum for Pin 12 and 20V is the maximum for Pin 11.
- 3:** These parameters, although ensured, are not 100% tested in production.
- 4:** Output frequency equals oscillator frequency for the MIC38HC42 and MIC38HC43. Output frequency for the MIC38HC44 and MIC38HC45 equals one half the oscillator frequency.
- 5:** Parameter measured at trip point of latch with $V_{EA} = 0V$.
- 6:** Gain is defined as $A = \Delta V_{PIN1}/V_{TH} \times I_{SNS}$; $0 \leq (V_{TH} \times I_{SNS}) \leq 0.8V$.

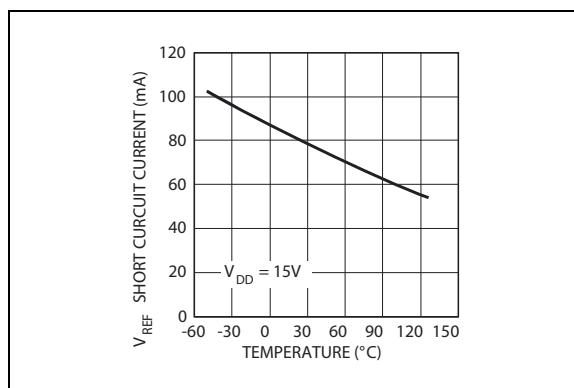

TEMPERATURE SPECIFICATIONS

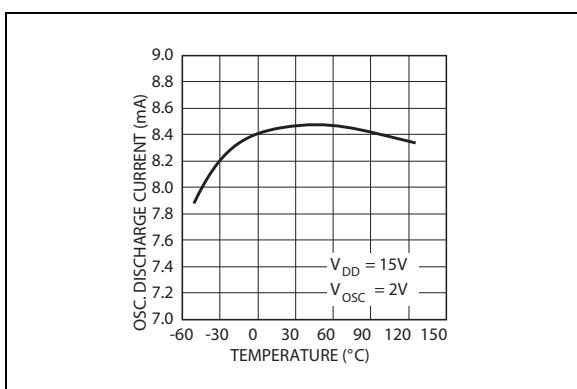
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Temperature Ranges						
Maximum Junction Temperature	$T_J(MAX)$	—	—	+150	°C	—
Junction Temperature Range	T_J	-40	—	+85	°C	—
Storage Temperature	T_S	-65	—	+150	°C	—
Package Thermal Resistances						
Thermal Resistance, PDIP 8-Ld	θ_{JA}	—	125	—	°C/W	—
Thermal Resistance, SOIC 8-Ld	θ_{JA}	—	170	—	°C/W	—
Thermal Resistance, PDIP 14-Ld	θ_{JA}	—	90	—	°C/W	—
Thermal Resistance, SOIC 14-Ld	θ_{JA}	—	145	—	°C/W	—


MIC38HC42/3/4/5

2.0 TYPICAL PERFORMANCE CURVES


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.


FIGURE 2-1: Oscillator Frequency Configuration.


FIGURE 2-4: Current Sense Amplifier vs. Error Amplifier Output.

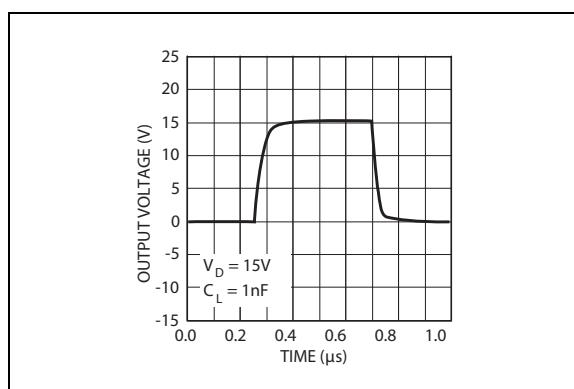

FIGURE 2-2: MIC38HC42/3 Output Dead Time vs. Oscillator Frequency.

FIGURE 2-5: Short-Circuit Reference Current vs. Temperature.

FIGURE 2-3: Oscillator Discharge Current vs. Temperature.

FIGURE 2-6: MIC38HC4x Output Waveform.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in [Table 3-1](#).

TABLE 3-1: PIN FUNCTION TABLE

Pin Number MIC38HC4x	Pin Number MIC38HC4x-1	Pin Name	Description
1	1	COMP	Compensation: Connect external compensation network to modify the error amplifier output.
—	2	NC	Not internally connected.
2	3	FB	Feedback (Input): Error amplifier input. Feedback is 2.5V at desired output voltage.
—	4	NC	Not internally connected.
3	5	ISNS	Current Sense (Input): Current sense comparator input. Connect to current sensing resistor or current transformer.
—	6	NC	Not internally connected.
4	7	RT/CT	Timing Resistor/Timing Capacitor: Connect external RC network to select switching frequency.
5	—	GND	Ground: Combined analog and power ground.
—	8	PGND	Power Ground: N-channel driver transistor ground.
—	9	AGND	Analog Ground: Controller circuitry ground.
6	10	OUT	Power Output: Totem-pole output.
—	11	VD	Power Supply (Input): P-channel driver transistor supply input. Return to power ground (PGND).
7	12	VDD	Analog Supply (Input): Controller circuitry supply input. Return to analog ground (AGND).
—	13	NC	Not internally connected.
8	14	VREF	5V Reference (Output): Connect external RC network.

MIC38HC42/3/4/5

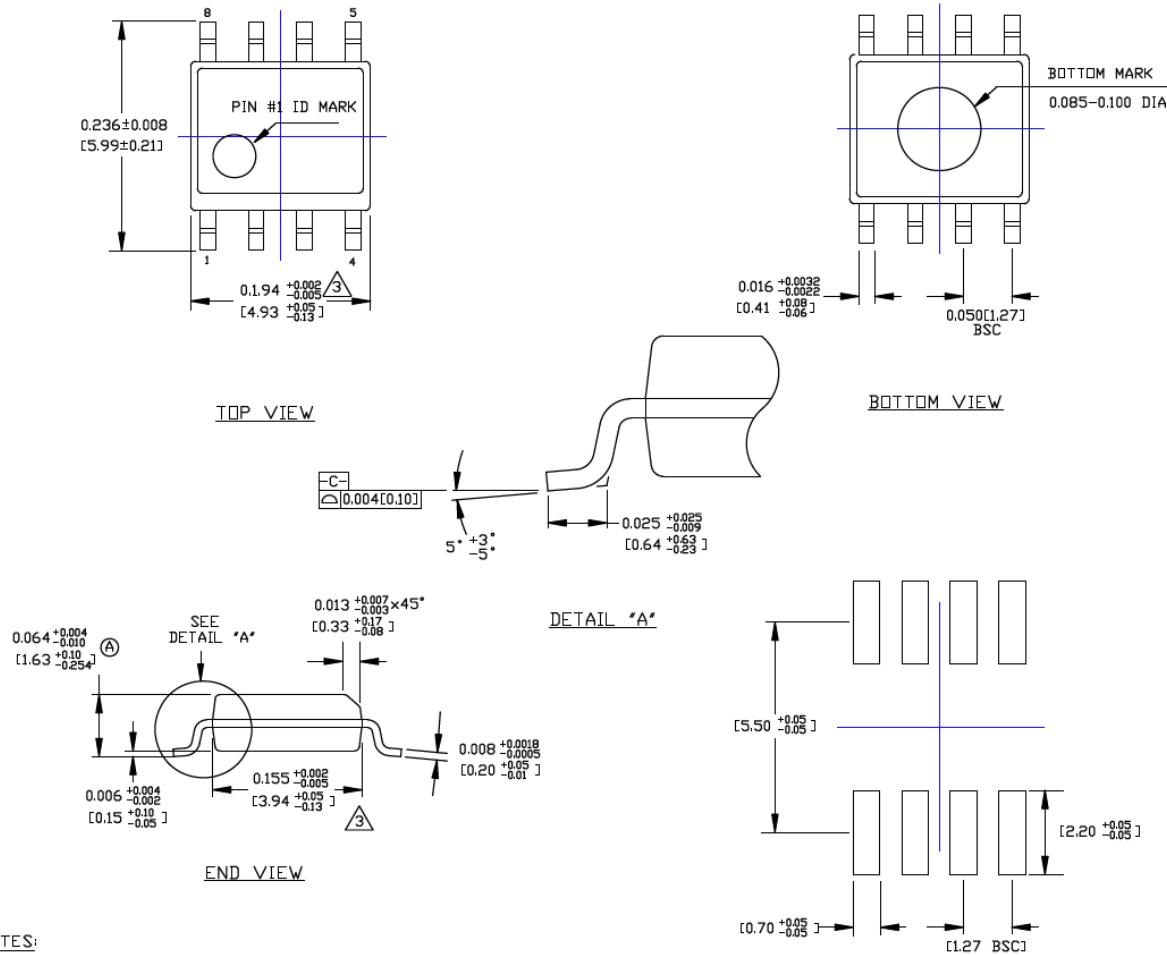
4.0 PACKAGING INFORMATION

4.1 Package Marking Information

8-Lead SOIC*	Example	8-Lead PDIP*	Example
XXX XXXXXXXX WNNN	MIC 38HC42YM 96T6	XXX XXXXXXXX WNNN	MIC 38HC44YN 4S49
14-Lead SOIC*	Example	14-Lead PDIP*	Example
XXX XXXXXX-XXX WNNN	MIC 38HC43-1YM 5K3I	XXX XXXXXX-XXX WNNN	MIC 38HC45-1YN 20B8

Legend:	XX...X Product code or customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) * This package is Pb-free. The Pb-free JEDEC designator can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar (_) symbol may not be to scale.

Note: If the full seven-character YYWWNNN code cannot fit on the package, the following truncated codes are used based on the available marking space:
6 Characters = YWWNNN; 5 Characters = WWNNN; 4 Characters = WNNN; 3 Characters = NNN;
2 Characters = NN; 1 Character = N


8-Lead SOIC Package Outline and Recommended Land Pattern

TITLE

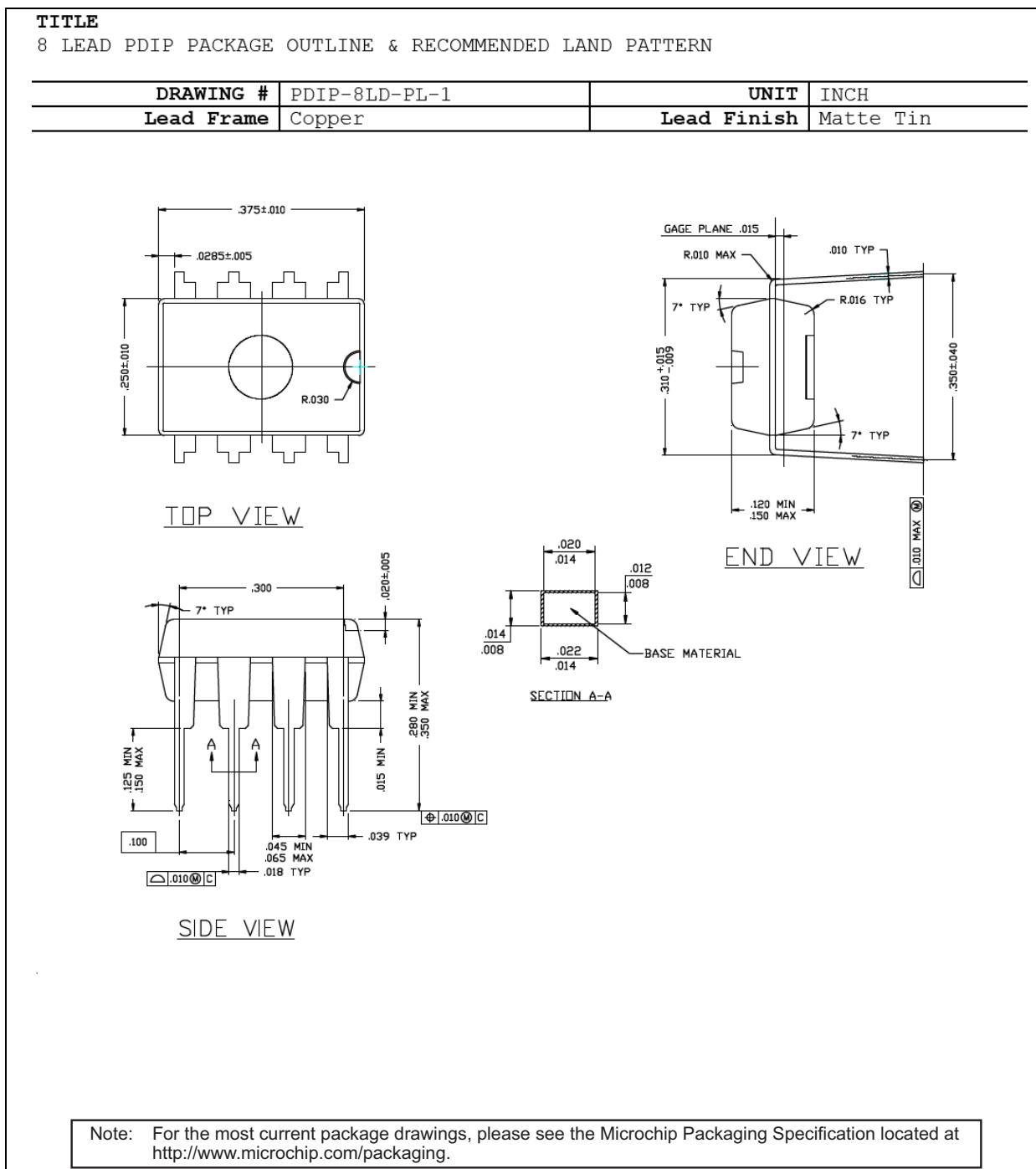
8 LEAD SOICN PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING # SOICN-8LD-PL-1

UNIT INCH [MM]

NOTES:

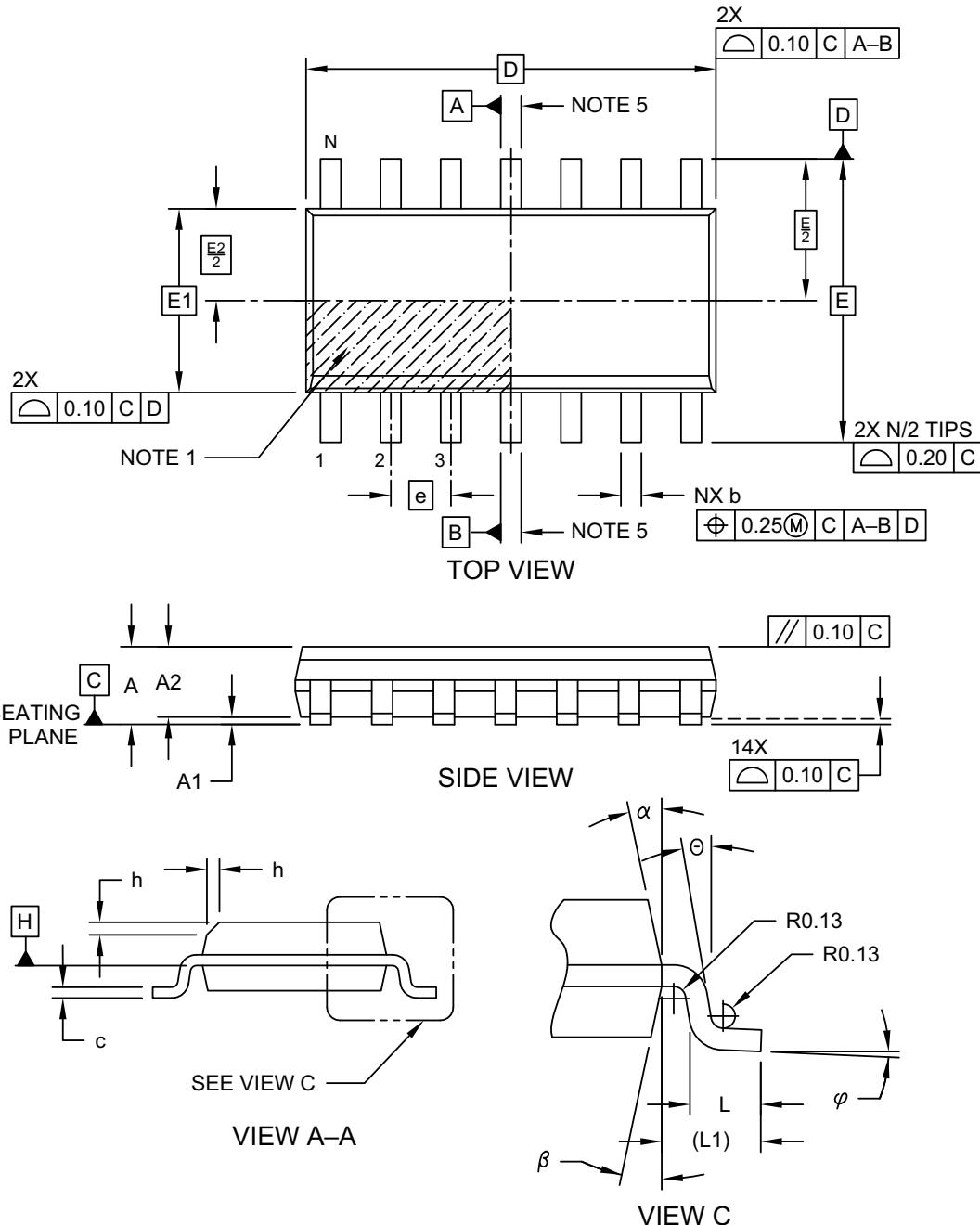
1. DIMENSIONS ARE IN INCHES[MM].
2. CONTROLLING DIMENSION: INCHES.


⚠ DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.010[0.25] PER SIDE.

RECOMMENDED LAND PATTERN

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>.

MIC38HC42/3/4/5


8-Lead PDIP Package Outline and Recommended Land Pattern

14-Lead SOIC Package Outline and Recommended Land Pattern

14-Lead Plastic Small Outline (D3X, UEB, M5B, UEB) - Narrow, 3.90 mm Body [SOIC] Atmel Legacy Global Package Code SVQ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Microchip Technology Drawing No. C04-065-D3X Rev D

MIC38HC42/3/4/5

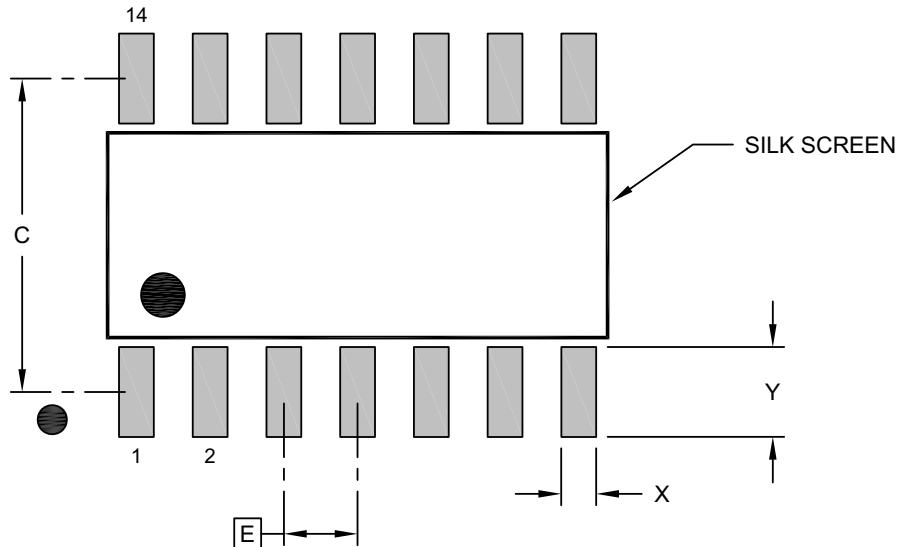
14-Lead Plastic Small Outline (D3X, UEB, M5B, UEB) - Narrow, 3.90 mm Body [SOIC] Atmel Legacy Global Package Code SVQ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Dimension	Limits	Units	MILLIMETERS		
			MIN	NOM	MAX
Number of Pins	N		14		
Pitch	e		1.27	BSC	
Overall Height	A		-	-	1.75
Molded Package Thickness	A2		1.25	-	-
Standoff	§	A1	0.10	-	0.25
Overall Width	E		6.00	BSC	
Molded Package Width	E1		3.90	BSC	
Overall Length	D		8.65	BSC	
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04	REF	
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	c	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-D3X Rev D Sheet 2 of 2

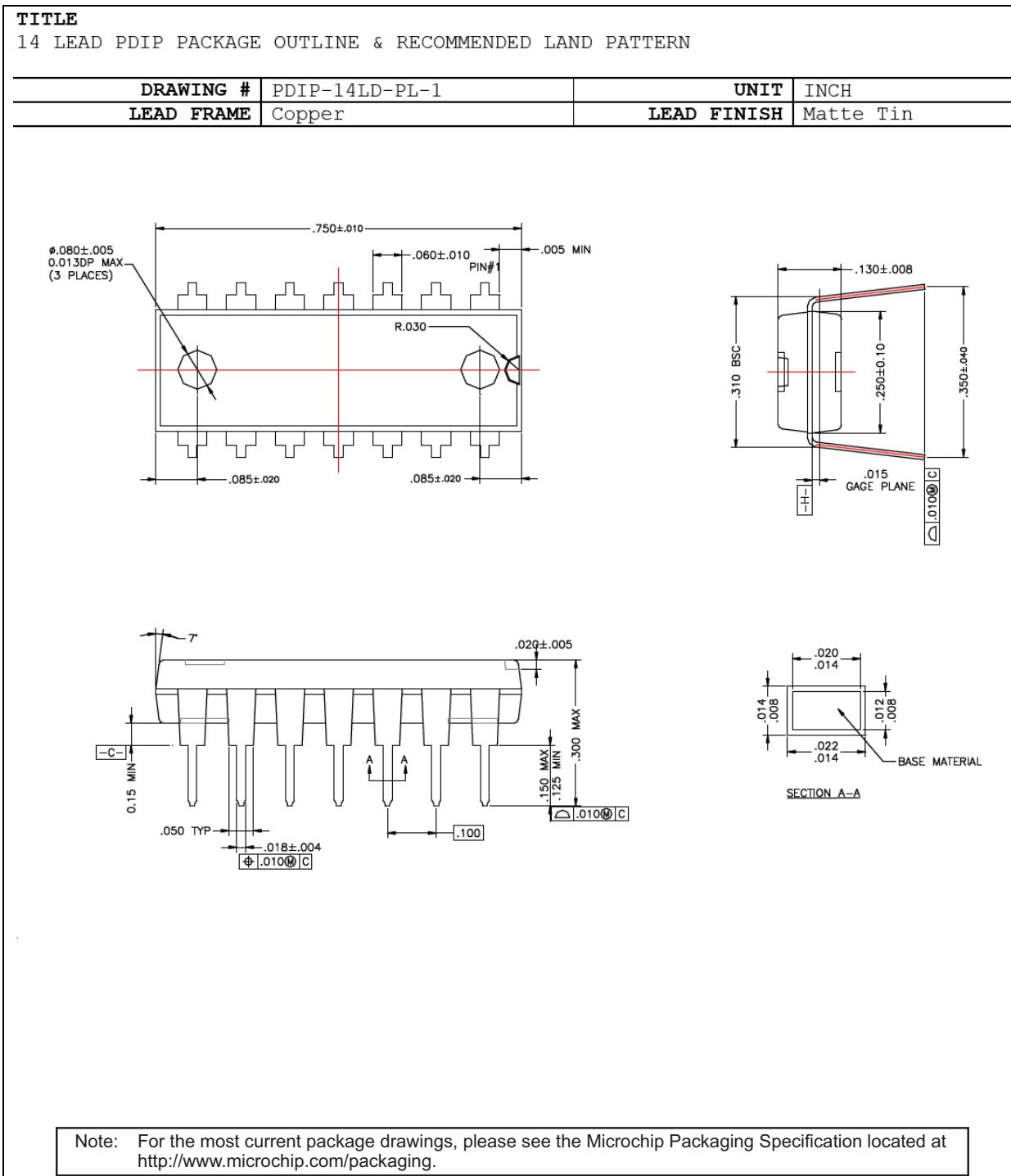
14-Lead Plastic Small Outline (D3X, UEB, M5B, UEB) - Narrow, 3.90 mm Body [SOIC] Atmel Legacy Global Package Code SVQ

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	C		5.40	
Contact Pad Width (X14)	X			0.60
Contact Pad Length (X14)	Y			1.55

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-D3X Rev D

MIC38HC42/3/4/5

14-Lead PDIP Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (March 2023)

- Converted Micrel document MIC38HC42/3/4/5 to Microchip data sheet DS20006735A.
- Minor text changes throughout.

MIC38HC42/3/4/5

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<u>Part Number</u>	<u>[-X]</u>	<u>X</u>	<u>X</u>	<u>[-XX]</u>	<u>Examples:</u>
Device	Special Pack- age Option	Temp. Range	Package	Media Type	
Device:	MIC38HC4x:	BiCMOS 1A Current-Mode PWM Controllers (see Selection Guide for specifics)			
Special Pack- age Option:	1	=	14-Lead PDIP or SOIC		a) MIC38HC42YM: MIC38HC42 (see Selection Guide), -40°C to +85°C Temp. Range, 8-Lead SOIC, 95/Tube
Temperature Range:	Y	=	-40°C to +85°C		b) MIC38HC43-1YN: MIC38HC43 (see Selection Guide), -40°C to +85°C Temp. Range, 14-Lead PDIP, 25/Tube
Package:	M	=	8-Lead or 14-Lead SOIC		c) MIC38HC44-1YM-TR: MIC38HC44 (see Selection Guide), -40°C to +85°C Temp. Range, 14-Lead SOIC, 2,500/Reel
	N	=	8-Lead or 14-Lead PDIP		d) MIC38HC45YN: MIC38HC45 (see Selection Guide), -40°C to +85°C Temp. Range, 8-Lead PDIP, 50/Tube
Media Type:	<blank>= 95/Tube (8-Lead SOIC only) <blank>= 54/Tube (14-Lead SOIC only) <blank>= 50/Tube (8-Lead PDIP only) <blank>= 25/Tube (14-Lead PDIP only) TR = 2,500/Reel (SOIC options only)				e) MIC38HC42-1YN: MIC38HC42 (see Selection Guide), -40°C to +85°C Temp. Range, 14-Lead PDIP, 25/Tube
					f) MIC38HC43YM-TR: MIC38HC43 (see Selection Guide), -40°C to +85°C Temp. Range, 8-Lead SOIC, 2,500/Reel
					Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

Selection Guide

Duty Cycle	UVLO Thresholds	
	Startup 8.4V Minimum Operating 7.6V	Startup 14.5V Minimum Operating 9V
0% to 96%	MIC38HC43	MIC38HC42
0% to 50%	MIC38HC45	MIC38HC44

MIC38HC42/3/4/5

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at <https://www.microchip.com/en-us/support/design-help/client-support-services>.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BestTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2253-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820