
**Features**

- Epitaxial Planar Die Construction
- Complementary PNP Types Available (DDTA)
- Built-In Biasing Resistor, R2 only
- Lead, Halogen and Antimony Free, RoHS Compliant "Green" Device (Notes 2 and 3)

**Mechanical Data**

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminal Connections: See Diagram
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- Marking: Date Code and Marking Code (See Table Below & Page 4)
- Ordering Information: See Page 4
- Weight: 0.008 grams (approximate)

| P/N        | R2 (NOM) | MARKING |
|------------|----------|---------|
| DDTC114GCA | 10KΩ     | N26     |
| DDTC124GCA | 22KΩ     | N27     |
| DDTC144GCA | 47KΩ     | N28     |
| DDTC115GCA | 100KΩ    | N29     |



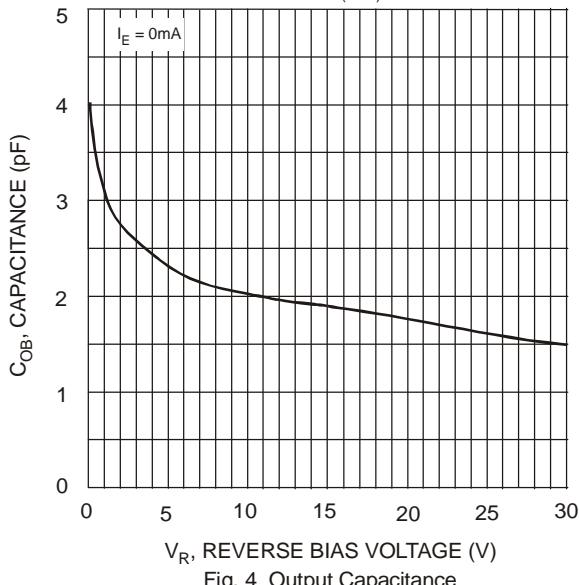
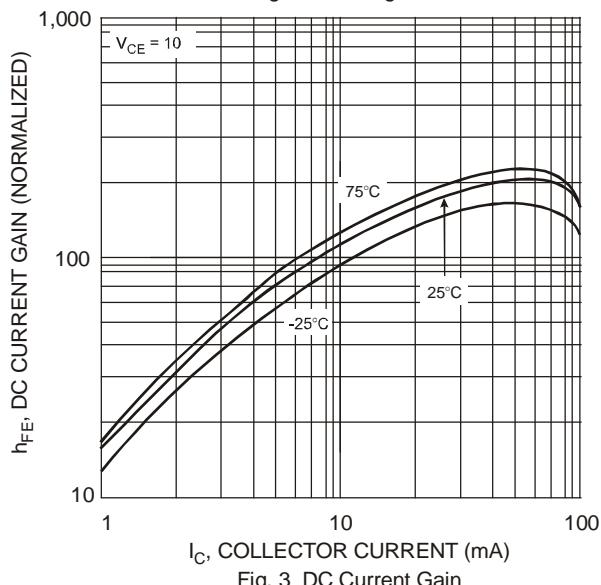
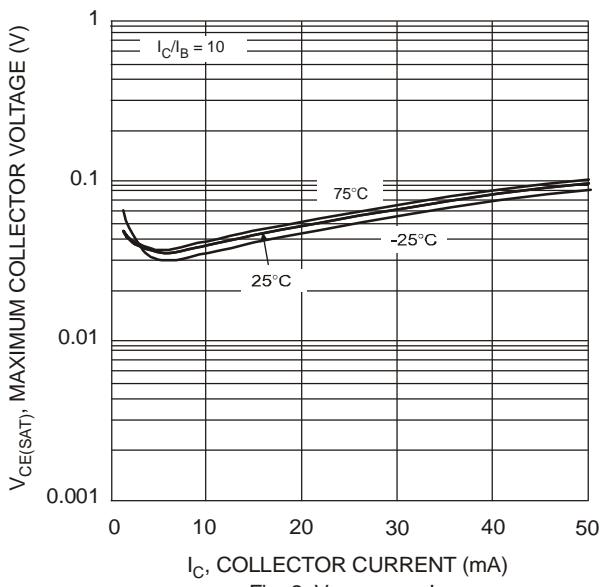
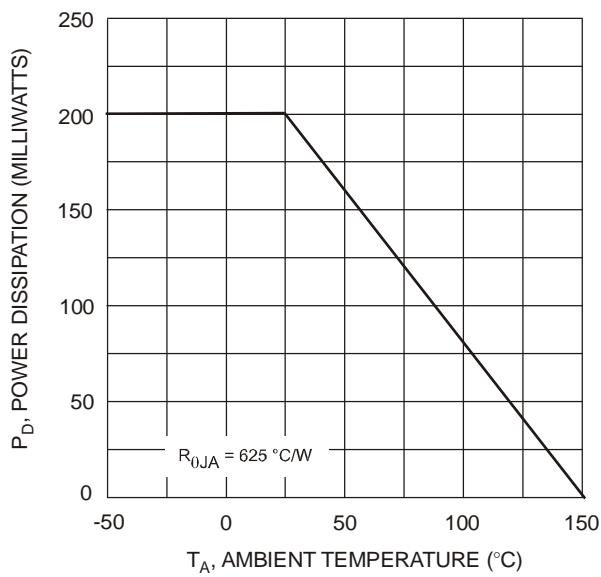
| SOT-23 |       |       |
|--------|-------|-------|
| Dim    | Min   | Max   |
| A      | 0.37  | 0.51  |
| B      | 1.20  | 1.40  |
| C      | 2.30  | 2.50  |
| D      | 0.89  | 1.03  |
| E      | 0.45  | 0.60  |
| G      | 1.78  | 2.05  |
| H      | 2.80  | 3.00  |
| J      | 0.013 | 0.10  |
| K      | 0.903 | 1.10  |
| L      | 0.45  | 0.61  |
| M      | 0.085 | 0.180 |
| α      | 0°    | 8°    |

All Dimensions in mm

**Maximum Ratings** @  $T_A = 25^\circ\text{C}$  unless otherwise specified

| Characteristic                                       | Symbol          | Value       | Unit |
|------------------------------------------------------|-----------------|-------------|------|
| Collector-Base Voltage                               | $V_{CBO}$       | 50          | V    |
| Collector-Emitter Voltage                            | $V_{CEO}$       | 50          | V    |
| Emitter-Base Voltage                                 | $V_{EBO}$       | 5           | V    |
| Collector Current                                    | $I_C$ (Max)     | 100         | mA   |
| Power Dissipation                                    | $P_D$           | 200         | mW   |
| Thermal Resistance, Junction to Ambient Air (Note 1) | $R_{\theta JA}$ | 625         | °C/W |
| Operating and Storage Temperature Range              | $T_J, T_{STG}$  | -55 to +150 | °C   |

Notes:





1. Mounted on FR4 PC Board with recommended pad layout as shown on Diodes Inc., suggested pad layout document AP02001, which can be found on our website at <http://www.diodes.com/datasheets/ap02001.pdf>
2. No purposefully added lead. Halogen and Antimony Free.
3. Product manufactured with Data Code V9 (week 33, 2008) and newer are built with Green Molding Compound. Product manufactured prior to Data Code V9 are built with Non-Green Molding Compound and may contain Halogens or  $\text{Sb}_2\text{O}_3$  Fire Retardants.

Electrical Characteristics @ $T_A = 25^\circ\text{C}$  unless otherwise specified

| Characteristic                       |                                                      | Symbol                      | Min                    | Typ | Max                     | Unit          | Test Condition                                                                                                                                          |
|--------------------------------------|------------------------------------------------------|-----------------------------|------------------------|-----|-------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collector-Base Breakdown Voltage     |                                                      | $\text{BV}_{\text{CBO}}$    | 50                     | —   | —                       | V             | $I_C = 50\mu\text{A}$                                                                                                                                   |
| Collector-Emitter Breakdown Voltage  |                                                      | $\text{BV}_{\text{CEO}}$    | 50                     | —   | —                       | V             | $I_C = 1\text{mA}$                                                                                                                                      |
| Emitter-Base Breakdown Voltage       |                                                      | $\text{BV}_{\text{EBO}}$    | 5                      | —   | —                       | V             | $I_E = 720\mu\text{A}$ , DDTC114GCA<br>$I_E = 330\mu\text{A}$ , DDTC124GCA<br>$I_E = 160\mu\text{A}$ , DDTC144GCA<br>$I_E = 72\mu\text{A}$ , DDTC115GCA |
| Collector Cutoff Current             |                                                      | $I_{\text{CBO}}$            | —                      | —   | 0.5                     | $\mu\text{A}$ | $V_{\text{CB}} = 50\text{V}$                                                                                                                            |
| Emitter Cutoff Current               | DDTC114GCA<br>DDTC124GCA<br>DDTC144GCA<br>DDTC115GCA | $I_{\text{EBO}}$            | 300<br>140<br>65<br>30 | —   | 580<br>260<br>130<br>58 | $\mu\text{A}$ | $V_{\text{EB}} = 4\text{V}$                                                                                                                             |
| Collector-Emitter Saturation Voltage |                                                      | $V_{\text{CE}(\text{sat})}$ | —                      | —   | 0.3                     | V             | $I_C = 10\text{mA}$ , $I_B = 0.5\text{mA}$                                                                                                              |
| DC Current Transfer Ratio            | DDTC114GCA<br>DDTC124GCA<br>DDTC144GCA<br>DDTC115GCA | $h_{\text{FE}}$             | 30<br>56<br>68<br>82   | —   | —                       | —             | $I_C = 5\text{mA}$ , $V_{\text{CE}} = 5\text{V}$                                                                                                        |
| Bleeder Resistor ( $R_2$ ) Tolerance |                                                      | $\Delta R_2$                | -30                    | —   | +30                     | %             | —                                                                                                                                                       |
| Gain-Bandwidth Product*              |                                                      | $f_T$                       | —                      | 250 | —                       | MHz           | $V_{\text{CE}} = 10\text{V}$ , $I_E = -5\text{mA}$ ,<br>$f = 100\text{MHz}$                                                                             |

\* Transistor - For Reference Only

Typical Curves – DDTC114GCA



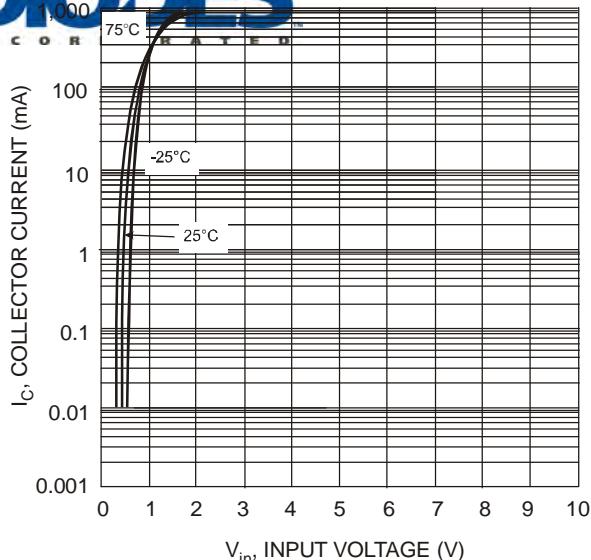
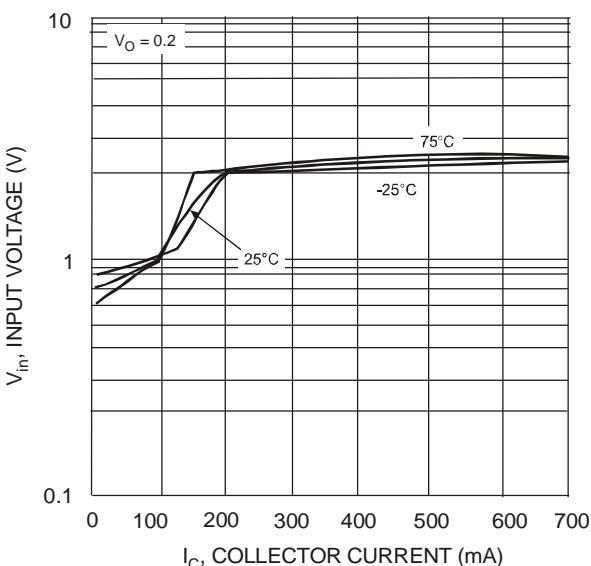
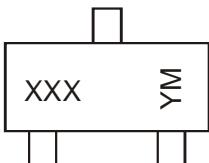



Fig. 5 Collector Current vs. Input Voltage





Fig. 6 Input Voltage vs. Collector Current

## Ordering Information (Note 4)

| Device         | Packaging | Shipping         |
|----------------|-----------|------------------|
| DDTC114GCA-7-F | SOT-23    | 3000/Tape & Reel |
| DDTC124GCA-7-F | SOT-23    | 3000/Tape & Reel |
| DDTC144GCA-7-F | SOT-23    | 3000/Tape & Reel |
| DDTC115GCA-7-F | SOT-23    | 3000/Tape & Reel |

Notes: 4. For packaging details, go to our website at <http://www.diodes.com/datasheets/ap02007.pdf>.

## Marking Information



XXX = Product Type Marking Code, See Table on Page 1

YM = Date Code Marking

Y = Year ex: T = 2006

M = Month ex: 9 = September

### Date Code Key

| Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
|------|------|------|------|------|------|------|------|
| Code | T    | U    | V    | W    | X    | Y    | Z    |

| Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Code  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | O   | N   | D   |

### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

### LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.



NEW PRODUCT