

Standard Diodes (Super MAGN-A-PAK Power Modules), 600 A

Super MAGN-A-PAK

FEATURES

- High current capability
- High surge capability
- High voltage ratings up to 2000 V
- 3000 V_{RMS} isolating voltage with non-toxic substrate
- Industrial standard package
- UL approved file E78996
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- Rectifying bridge for large motor drives
- Rectifying bridge for large UPS

PRIMARY CHARACTERISTICS	
$I_{F(AV)}$	600 A
Type	Modules - diode, high voltage
Package	Super MAGN-A-PAK
Circuit configuration	Two diodes doubler circuit

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$I_{F(AV)}$		600	A
	T_C	100	°C
$I_{F(RMS)}$		942	A
	T_C	100	°C
I_{FSM}	50 Hz	19 000	A
	60 Hz	20 100	
I^2t	50 Hz	1805	kA^2s
	60 Hz	1683	
$I^2\sqrt{t}$		18 050	$kA^2\sqrt{s}$
V_{RRM}	Range	800 to 2000	V
T_{Stg}, T_J	Range	-40 to +150	°C

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS				
TYPE NUMBER	VOLTAGE CODE	V_{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V_{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I_{RRM} MAXIMUM AT T_J MAXIMUM mA
VS-VSKD600..	08	800	900	50
	12	1200	1300	
	16	1600	1700	
	20	2000	2100	

FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS	
Maximum average forward current at case temperature	$I_{F(AV)}$	180° conduction, half sine wave			600	A	
					100	°C	
Maximum RMS forward current	$I_{F(RMS)}$	180° conduction, half sine wave at $T_C = 100$ °C			942	A	
Maximum peak, one-cycle forward, non-repetitive surge current	I_{FSM}	$t = 10$ ms	No voltage reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	19.0	kA	
		$t = 8.3$ ms	20.1				
		$t = 10$ ms	100 % V_{RRM} reapplied		16.2		
		$t = 8.3$ ms	17.2				
Maximum I^2t for fusing	I^2t	$t = 10$ ms	No voltage reapplied	initial $T_J = T_J$ maximum	1805	kA ² s	
		$t = 8.3$ ms	1683				
		$t = 10$ ms	100 % V_{RRM} reapplied		1319		
		$t = 8.3$ ms	1230				
Maximum $I^2\sqrt{t}$ for fusing	$I^2\sqrt{t}$	$t = 0.1$ ms to 10 ms, no voltage reapplied			18 050	kA ² \sqrt{s}	
Low level value of threshold voltage	$V_{F(TO)1}$	$(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)})$, $T_J = T_J$ maximum			0.70	V	
High level value of threshold voltage	$V_{F(TO)2}$	$(I > \pi \times I_{F(AV)})$, $T_J = T_J$ maximum			0.77		
Low level value of forward slope resistance	r_{f1}	$(16.7\% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)})$, $T_J = T_J$ maximum			0.28	mΩ	
High level value of forward slope resistance	r_{f2}	$(I > \pi \times I_{F(AV)})$, $T_J = T_J$ maximum			0.25		
Maximum forward voltage drop	V_{FM}	$I_{pk} = 1800$ A, $T_J = 25$ °C, $t_p = 10$ ms sine pulse			1.45	V	

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
RMS insulation voltage	V_{INS}	$t = 1$ s			3000	V
Maximum peak reverse and off-state leakage current	I_{RRM}	$T_J = T_J$ maximum, rated V_{RRM} applied			50	mA

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum junction operating and storage temperature range	T_J, T_{Stg}				-40 to +150	°C
Maximum thermal resistance, junction to case per junction	R_{thJC}	DC operation			0.065	K/W
Maximum thermal resistance, case to heatsink per module	R_{thC-hs}	Mounting surface smooth, flat and greased			0.02	
Mounting torque $\pm 10\%$ busbar to Super MAGN-A-PAK	Super MAGN-A-PAK to heatsink	A mounting compound is recommended and the torque should be rechecked after a period of 3 hours to allow for the spread of the compound			6 to 8	Nm
Approximate weight					12 to 15	
Case style		See dimensions - link at the end of datasheet			1500	g
					Super MAGN-A-PAK	

ΔR_{thJC} CONDUCTION					
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	VALUES	UNITS
180°	0.009	0.006	$T_J = T_J$ maximum	K/W	
120°	0.011	0.011			
90°	0.014	0.015			
60°	0.021	0.022			
30°	0.037	0.038			

Note

- The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

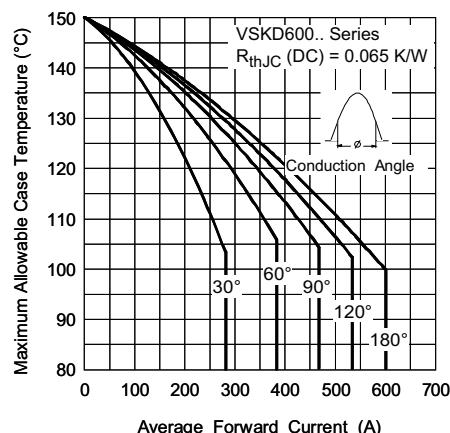


Fig. 1 - Current Ratings Characteristics

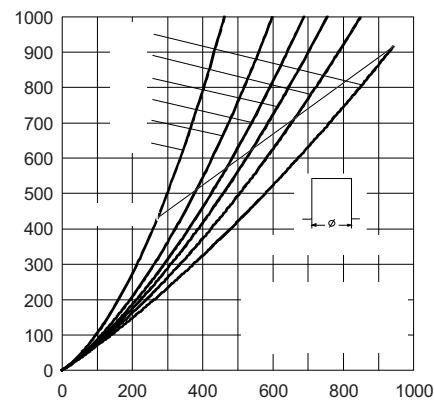


Fig. 4 - Forward Power Loss Characteristics

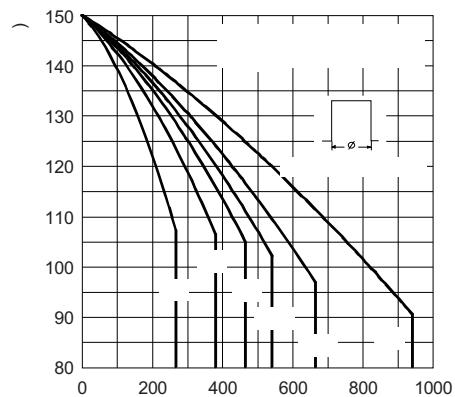


Fig. 2 - Current Ratings Characteristics

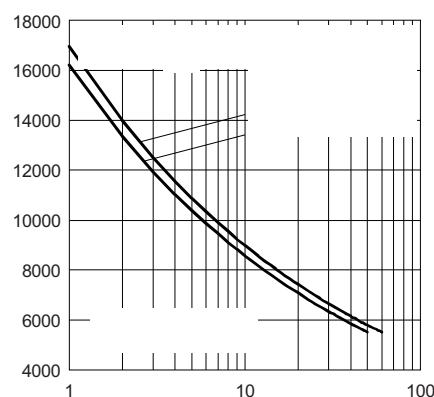


Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 3 - Forward Power Loss Characteristics

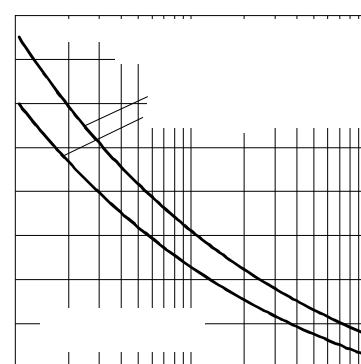


Fig. 6 - Maximum Non-Repetitive Surge Current

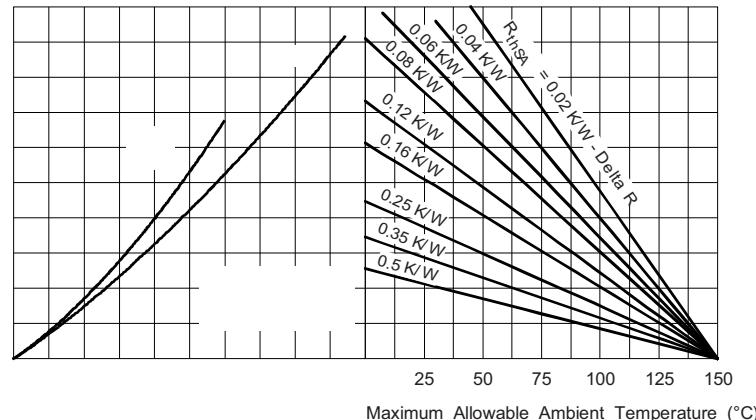


Fig. 7 - Forward Power Loss Characteristics

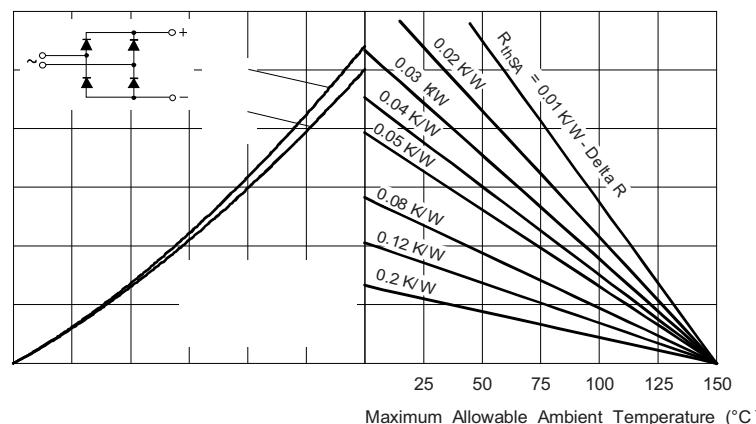


Fig. 8 - Forward Power Loss Characteristics

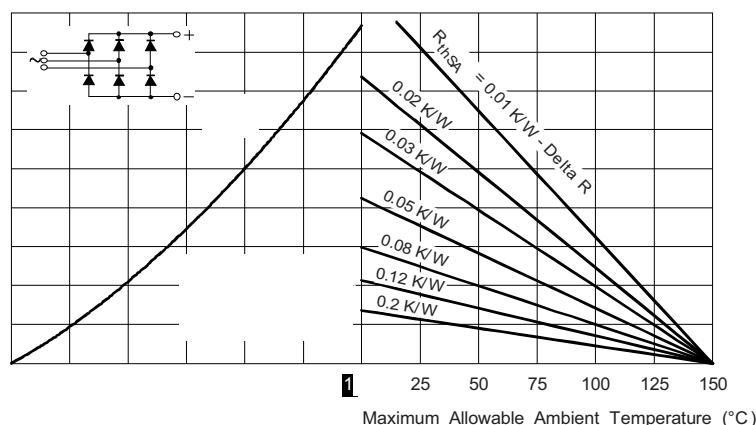
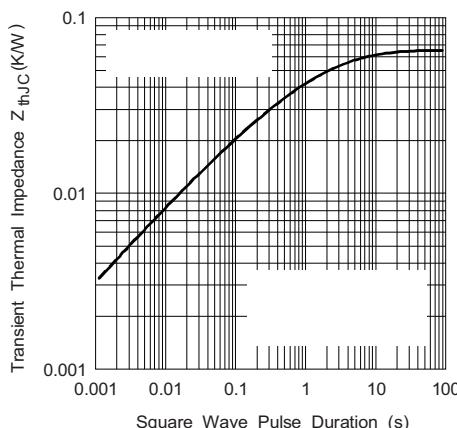
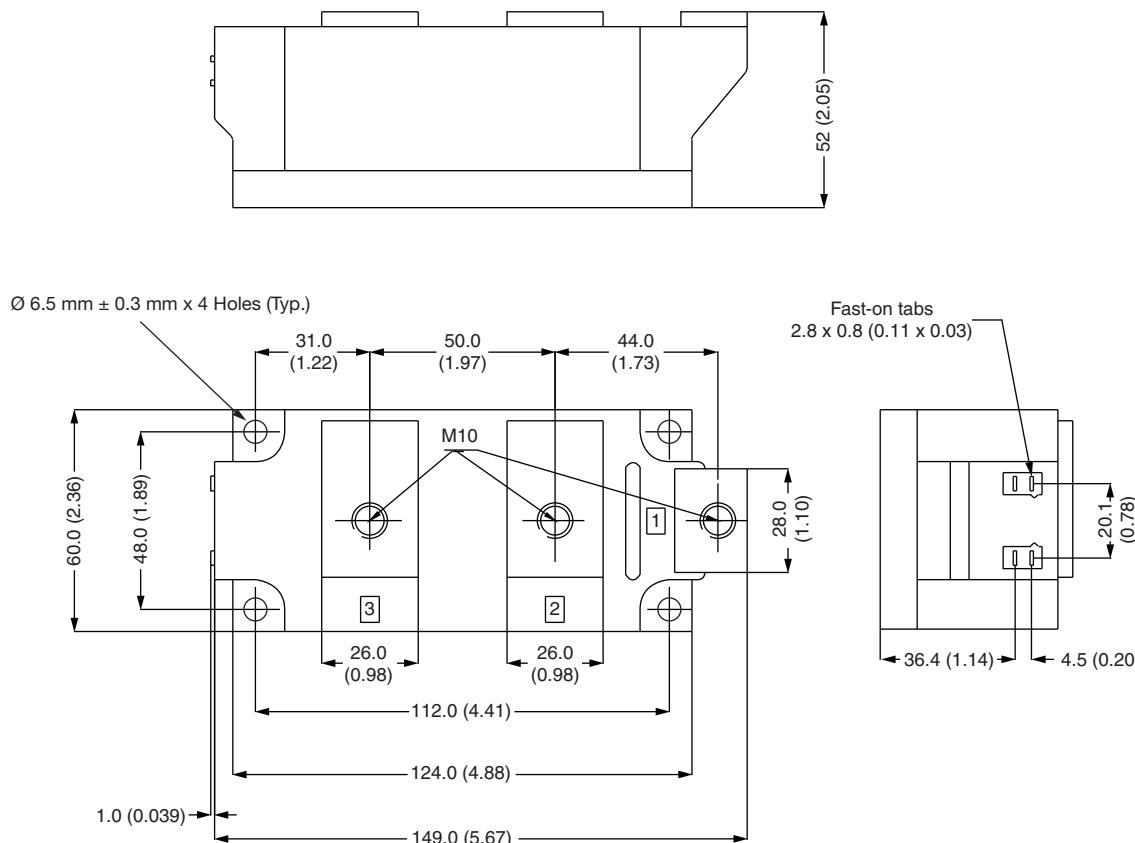



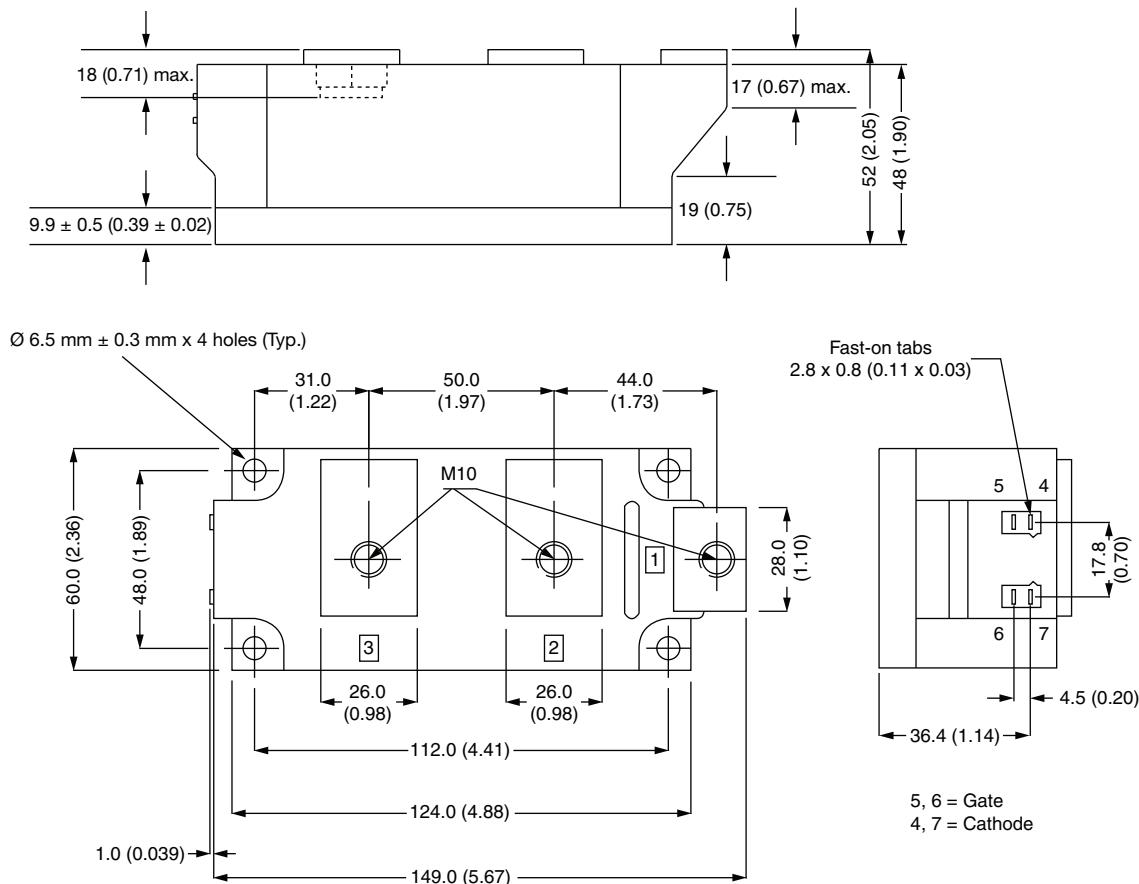
Fig. 9 - Forward Power Loss Characteristics

Fig. 10 - Thermal Impedance Z_{thJC} Characteristic


ORDERING INFORMATION TABLE

Device code	VS-VS	KD	600	-	20
	(1)	(2)	(3)	(4)	
[1] - Vishay Semiconductors product					
[2] - Circuit configuration D = two diodes in series (see circuit configuration table)					
[3] - Current rating					
[4] - Voltage code x 100 = V_{RRM} (see voltage ratings table)					

CIRCUIT CONFIGURATION		
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
Two diodes doubler circuit	KD	
LINKS TO RELATED DOCUMENTS		
Dimensions	www.vishay.com/doc?95088	


Super MAGN-A-PAK Diode

DIMENSIONS in millimeters (inches)

Super MAGN-A-PAK Thyristor/Diode

DIMENSIONS in millimeters (inches)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.