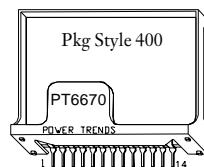


- Input Voltage Range: 3.1 to 3.6V
4.5 to 5.5V
- Adjustable Output Voltage
- 85% Efficiency
- Remote Sense Capability
- Soft Start

The PT6670 is a series of high-output Integrated Switching Regulators (ISRs) designed to provide a voltage boost function. Housed in a 14-Pin SIP (Single In-line Package), the PT6670 series incorporates regulators for either a +3.3V or +5.0V input and provide output voltages from +5V to +12V. Applications include power for auxiliary circuits requiring up to 20W.

Pin-Out Information


Pin	Function	Pin	Function
1	Remote Sense	8	GND
2	Do not connect	9	GND
3	Do not connect	10	GND
4	V _{in}	11	V _{out}
5	V _{in}	12	V _{out}
6	V _{in}	13	V _{out}
7	GND	14	V _{out} Adjust

Standard Application

Ordering Information

+3.3V Input	+5V Input	V _{out}
PT6671	—	+5.0 Volts
PT6672	PT6675	+9.0 Volts
PT6673	PT6674	+12.0 Volts

PT Series Suffix (PT1234X)

Case/Pin Configuration	Heat Spreader
Vertical Through-Hole	P
Horizontal Through-Hole	D
Horizontal Surface Mount	E

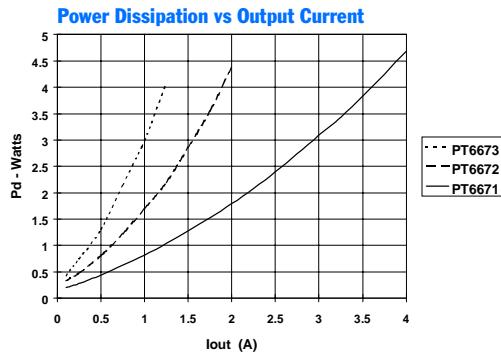
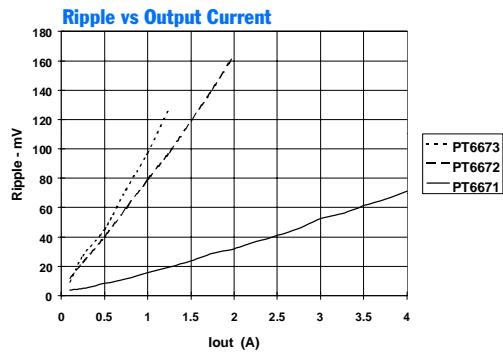
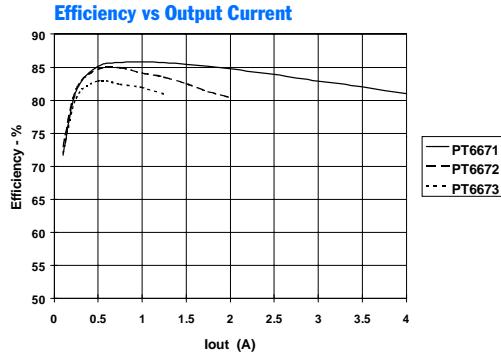
Preliminary Specifications

Characteristics (T _a = 25°C unless noted)	Symbols	Conditions	PT6670 SERIES			Units
			Min	Typ	Max	
Output Current	I _o	T _a = 60°C, 200 LFM, pkg P T _a = 25°C, natural convection	PT6671 PT6672/5 PT6673 PT6674 PT6675	0.1	—	TBD
				0.1	—	4.0
				0.1	—	1.67
				0.1	—	1.25
				0.1	—	2.0
Input Voltage Range	V _{in}	Over V _o and I _o range	PT6671/2/3 PT6674/5	3.1	3.3	3.6
				4.5	5.0	5.5
Inrush Current	I _{ir}	On start-up	—	—	—	TBD
Output Voltage Tolerance	ΔV _o	V _{in} = V _{in} (TYP), I _o = I _{omax} T _a = 0°C to 65°C	—	1.5	—	%V _o
Output Voltage Adjust Range	V _{oadj}	Pin 14 to V _o or ground	PT6671 PT6672/5 PT6673/4	3.8	—	5.5
				8.2	—	9.2
				9.6	—	12.8
Line Regulation	Reg _{line}	Over V _{in} range, I _o = I _{omax}	—	±0.25	±0.5	%V _o
Load Regulation	Reg _{load}	V _{in} = V _{in} (TYP), 0.1 ≤ I _o ≤ I _{omax}	—	±0.25	±0.5	%V _o
V _o Ripple/Noise	V _r	V _{in} = V _{in} (TYP), I _o = I _{omax}	—	3	—	%V _o
Transient Response with C ₁ = C ₂ = 560µF	t _{tr} V _{os}	I _o step between $\frac{1}{2}I_{omax}$ and I _{omax} V _o over/undershoot	—	500	—	µSec
			—	5	—	%V _o
Efficiency	η	V _{in} = V _{in} (TYP), I _o = $\frac{1}{2}I_{omax}$	PT6671 PT6672 PT6673 PT6675 PT6674	85	—	—
				84	—	—
				83	—	—
				88	—	—
				87	—	—
		V _{in} = V _{in} (TYP), I _o = I _{omax}	PT6671 PT6672 PT6673 PT6675 PT6674	82	—	—
				80	—	—
				82	—	—
				87	—	—
				86	—	—

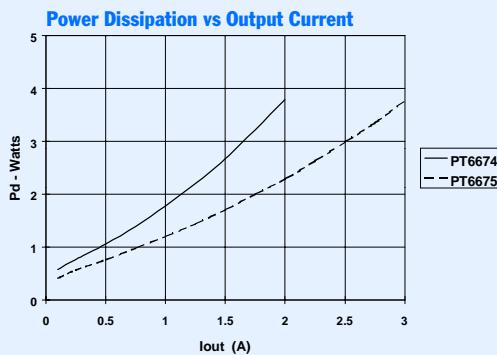
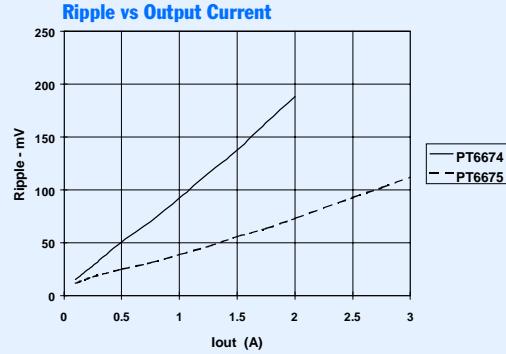
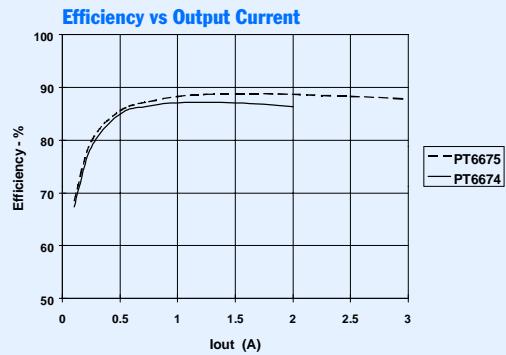
(Continued)

PT6670 Series

5V/3.3V Input 20W Boost
Integrated Switching Regulator




Preliminary Specifications (continued)

Characteristics ($T_a = 25^\circ\text{C}$ unless noted)	Symbols	Conditions	PT6670 SERIES			
			Min	Typ	Max	
					Units	
Switching Frequency	f_o	Over V_{in} range $0.1\text{A} \leq I_o \leq I_{omax}$	—	300	—	kHz
Absolute Maximum Operating Temperature Range	T_a		-40	—	+85	°C
Recommended Operating Temperature Range	T_a	Free Air Convection (40-60 LFM) Over V_{in} and I_o ranges with heat tab	-40	—	+65	°C
Storage Temperature	T_s	—	-40	—	+125	°C
Mechanical Shock	—	Per Mil-STD-883D, Method 2002.3	—	500	—	G's
Mechanical Vibration	—	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	—	7.5	—	G's
Weight	—	—	—	14	—	grams




Notes: (1) The PT6670 Series requires two $560\mu\text{F}$ electrolytic capacitors (input and output) for proper operation in all applications.
(2) This product does not include short circuit protection.

T Y P I C A L C H A R A C T E R I S T I C S

PT6671/2/3 (@ $V_{in}=+3.3\text{V}$) (See Note A)

PT6674/5 Series (@ $V_{in}=+5.0\text{V}$) (See Note A)

Note A: All characteristic data in the above graphs has been developed from actual products tested at 25°C . This data is considered typical data for the ISR.

Adjusting the Output Voltage of the PT6670

Series Boost Voltage ISR

The Power Trends PT6670 ISRs are a series of converters that operate from a 3.3V or 5V input bus voltage. In each case, the output voltage can be adjusted higher or lower than the factory trimmed pre-set voltage. Adjustment requires the addition of a single external resistor. Table 1 gives the permissible adjustment range for each model in the series as $V_a(\min)$ and $V_a(\max)$ respectively.

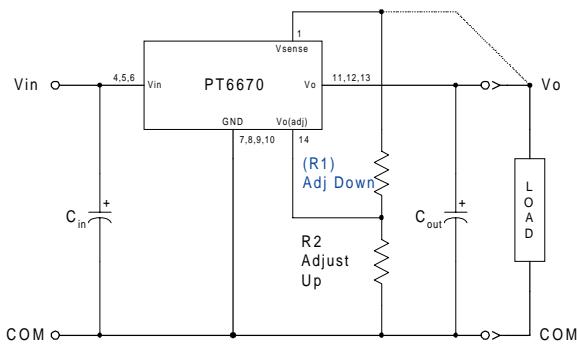
Adjust Up: To increase the output, add a resistor R2 between pin 14 (V_o Adjust) and pins 7-10 (GND).

Adjust Down: Add a resistor (R1), between pin 14 (V_o Adjust) and pin 1 (Remote Sense).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
2. Do not exceed the maximum advised adjustment voltage. Doing so could over stress the part.
3. Never connect capacitors to the V_o Adjust control pin. Any capacitance added to this pin will affect the stability of the ISR.
4. In the case of the PT6671, when the output is adjusted lower than the pre-trimmed output, the maximum input voltage to the ISR should not exceed $(V_o - 0.5)V$.


The adjust up and adjust down resistor values can also be calculated using the following formulas. Be sure to select the correct formula parameters from Table 1 for the model being adjusted.

$$(R1) = \frac{K_o (V_a - 2.5)}{2.5 (V_o - V_a)} - R_s \text{ k}\Omega$$

$$R2 = \frac{K_o}{V_a - V_o} - R_s \text{ k}\Omega$$

Where: V_o = Original output voltage
 V_a = Adjusted output voltage
 K_o = The multiplier constant in Table 1
 R_s = The series resistance from Table 1

Figure 1

Table 1

PT6670 ADJUSTMENT RANGE AND FORMULA PARAMETERS

Series Pt

3.3V Bus	PT6671	PT6672	PT6673
5.0V Bus	PT6675	PT6674	
$V_o(\text{nom})$	5.0V	9.0V	12.0V
$V_a(\min)$	3.8V	8.2V	9.6V
$V_a(\max)$	5.5V	9.2V	12.8V
K_o (V-k\Omega)	25.0	48.75	47.41
R_s (k\Omega)	4.99	80.6	54.9

Table 2

PT6670 ADJUSTMENT RESISTOR VALUES

Series Pt

3.3V Bus	PT6671	PT6672	PT6673
5.0V Bus	PT6675	PT6674	
$V_o(\text{nom})$	5.0V	9.0V	12.0V
$V_a(\text{req'd})$		$V_a(\text{req'd})$	
3.8	(5.8)k\Omega	8.2	(58.3)k\Omega
3.9	(7.7)k\Omega	8.4	(111.0)k\Omega
4.0	(10.0)k\Omega	8.6	(217.0)k\Omega
4.1	(12.8)k\Omega	8.8	(534.0)k\Omega
4.2	(16.3)k\Omega	9.0	
4.3	(20.7)k\Omega	9.2	163.0k\Omega
4.4	(26.7)k\Omega	9.4	
4.5	(35.0)k\Omega	9.6	(1.2)k\Omega
4.6	(47.5)k\Omega	9.8	(8.0)k\Omega
4.7	(68.3)k\Omega	10.0	(16.2)k\Omega
4.8	(110.0)k\Omega	10.2	(26.2)k\Omega
4.9	(235.0)k\Omega	10.4	(38.7)k\Omega
5.0		10.6	(54.8)k\Omega
5.1	245.0k\Omega	10.8	(76.3)k\Omega
5.2	120.0k\Omega	11.0	(106.0)k\Omega
5.3	78.3k\Omega	11.2	(151.0)k\Omega
5.4	57.5k\Omega	11.4	(226.0)k\Omega
5.5	45.0k\Omega	11.6	(376.0)k\Omega
		11.8	(827.0)k\Omega
		12.0	
		12.2	182.0k\Omega
		12.4	63.3k\Omega
		12.6	24.1k\Omega
		12.8	4.4k\Omega

R1 = (Blue)

R2 = Black

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
PT6671D	ACTIVE	SIP MOD ULE	EEA	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6671E	ACTIVE	SIP MOD ULE	EEC	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6671L	ACTIVE	SIP MOD ULE	EEL	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6671M	ACTIVE	SIP MOD ULE	EEM	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6671P	ACTIVE	SIP MOD ULE	EED	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6673E	ACTIVE	SIP MOD ULE	EEC	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6673F	ACTIVE	SIP MOD ULE	EEF	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6673P	ACTIVE	SIP MOD ULE	EED	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6674D	ACTIVE	SIP MOD ULE	EEA	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6674E	ACTIVE	SIP MOD ULE	EEC	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6674P	ACTIVE	SIP MOD ULE	EED	14	12	TBD	Call TI	Level-1-215C-UNLIM
PT6675L	ACTIVE	SIP MOD ULE	EEL	14	12	TBD	Call TI	Level-1-215C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated