

Balanced Three-chip SIDACtor Device

This balanced protector is a surface mount alternative to the modified TO-220 package. Based on a six-pin surface mount SOIC package, it uses Littelfuse's patented "Y" (US Patent 4,905,119) configuration. It is available in surge current ratings up to 500 A.

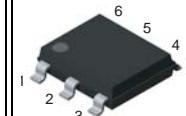
SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968-A (formerly known as FCC Part 68).

Electrical Parameters

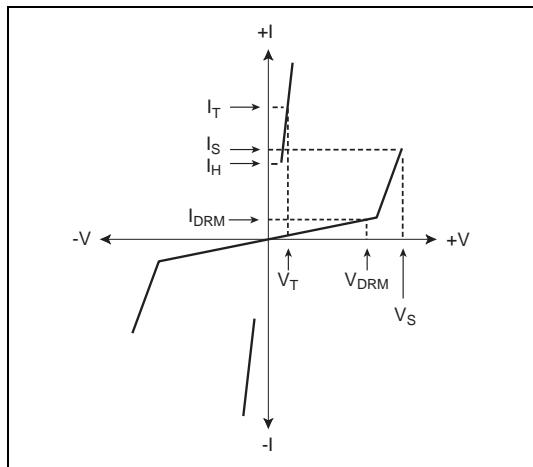
Part Number *	V_{DRM} Volts	V_s Volts	V_{DRM} Volts	V_s Volts	V_T Volts	I_{DRM} μAmps	I_S mAmps	I_T Amps	I_H mAmps	C_O pF
	Pins 1-3, 1-4		Pins 3-4							
P1553U_	130	180	130	180	8	5	800	2.2	150	80
P1803U_	150	210	150	210	8	5	800	2.2	150	80
P2103U_	170	250	170	250	8	5	800	2.2	150	80
P2353U_	200	270	200	270	8	5	800	2.2	150	80
P2703U_	230	300	230	300	8	5	800	2.2	150	60
P3203U_	270	350	270	350	8	5	800	2.2	150	60
P3403U_	300	400	300	400	8	5	800	2.2	150	60
P5103U_	420	600	420	600	8	5	800	2.2	150	60
A2106U_3 **	170	250	50	80	8	5	800	2.2	120	80
A5030U_3 **	400	550	270	340	8	5	800	2.2	150	60

* For individual "UA", "UB", and "UC" surge ratings, see table below.

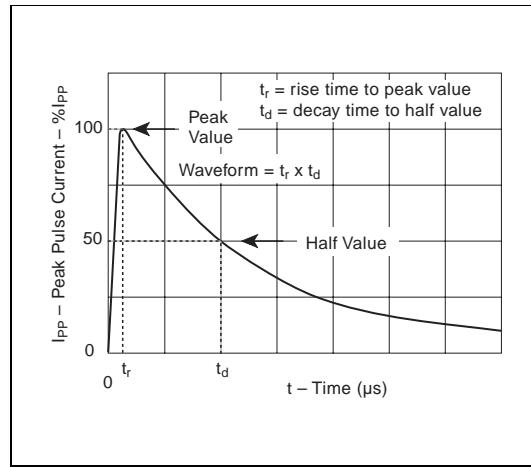
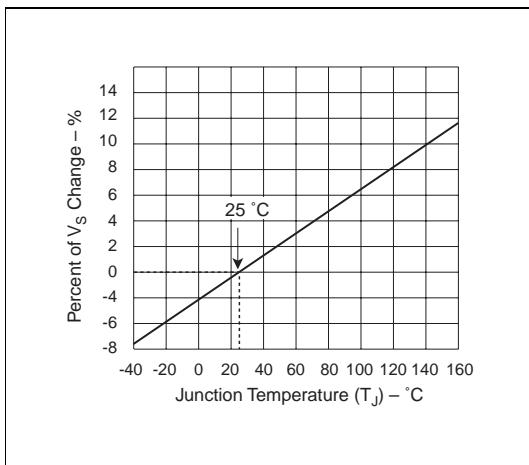
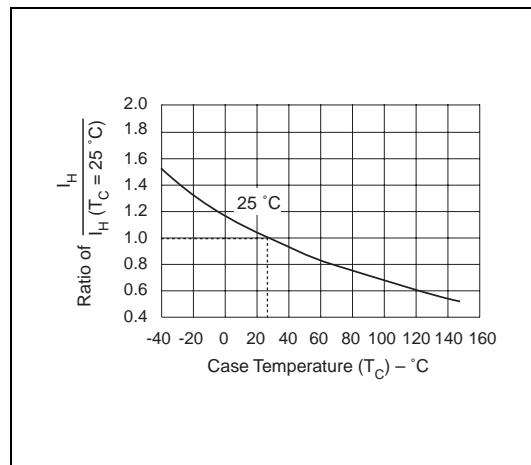
** Asymmetrical


General Notes:

- All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.
- I_{PP} is a repetitive surge rating and is guaranteed for the life of the product.
- Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM} .
- V_S is measured at 100 V/μs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance (C_O) is measured between Pins 1-3 and 1-4 at 1 MHz with a 2 V bias and is a typical value for "UA", "UB", and "UC" products.
- Device is designed to meet balance requirements of GTS 8700 and GR 974.


Surge Ratings

Series	I_{PP} 2x10 μs Amps	I_{PP} 8x20 μs Amps	I_{PP} 10x160 μs Amps	I_{PP} 10x560 μs Amps	I_{PP} 10x1000 μs Amps	I_{TSM} 60 Hz Amps	di/dt Amps/μs
A	150	150	90	50	45	20	500
B	250	250	150	100	80	30	500
C	500	400	200	150	100	50	500




Thermal Considerations

Package	Symbol	Parameter	Value	Unit
Modified MS-013		T _J	Operating Junction Temperature Range	-40 to +125 °C
		T _S	Storage Temperature Range	-65 to +150 °C
		R _{θJA}	Thermal Resistance: Junction to Ambient	60 °C/W

Data Sheets

V-I Characteristics

t_r x t_d Pulse Wave-formNormalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature