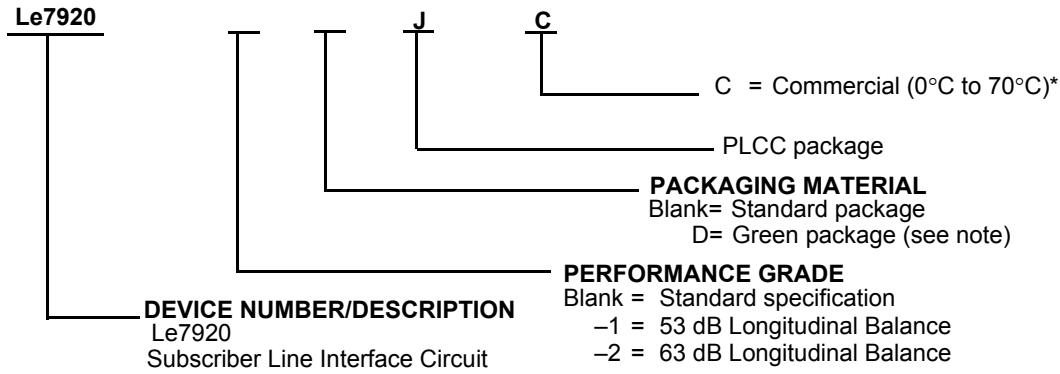

The Le7920 Subscriber Line Interface Circuit implements the basic telephone line interface functions, and enables the

design of low cost, high performance, POTS line interface cards.

DISTINCTIVE CHARACTERISTICS

- Control states: Active, Ringing, Standby, and Disconnect
- Low standby power (35 mW)
- -19 V to -58 V battery operation
- On-hook transmission
- Two-wire impedance set by single external impedance
- Programmable constant-current feed
- Programmable loop-detect threshold
- Programmable ring-trip detect threshold
- No -5 V supply required
- Current Gain = 500
- On-chip Thermal Management (TMG) feature
- Four on-chip relay drivers and relay snubbers, 1 ringing and 3 general purpose (32 PLCC)

BLOCK DIAGRAM


TABLE OF CONTENTS

Ordering Information	3
Standard Products	3
Connection Diagram	4
Top View	4
Pin Descriptions	5
Absolute Maximum Ratings	6
Operating Ranges	7
Electrical Characteristics	8
Electrical Characteristics (continued)	9
Electrical Characteristics (continued)	10
Relay Driver Schematics	10
DC Feed Characteristics	12
Test Circuits	14
Test Circuits (continued)	15
Test Circuits (continued)	16
Physical Dimensions	17
32-Pin PLCC	17
Revision Summary	18
Revision C to Revision D	18
Revision D to Revision E	18
Revision E to Revision F	18
Revision F to Revision G	18
Revision G to Revision H	18
Revision H to Revision I	18
Revision I1 to Revision J1	18
Revision J1 to Revision J2	18

ORDERING INFORMATION

Standard Products

Zarlink standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Note: Green package meets RoHS Directive 2002/95/EC of the European Council to minimize the environmental impact of electrical equipment.

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local Zarlink sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on Zarlink's standard military-grade products.

Valid Combinations		
Le7920*	-1	JC
	-2	DJC

**Zarlink reserves the right to fulfill all orders for this device with parts marked with the "Am" part number prefix, until such time as all inventory bearing this mark has been depleted. It should be noted that parts marked with either the "Am" or the "Le" part number prefix are equivalent devices in terms of form, fit, and function. The only difference between the two is in the part number prefix appearing on the topside mark.*

CONNECTION DIAGRAM

Top View

Notes:

- 1. Pin 1 is marked for orientation.
- 2. NC = No Connect

PIN DESCRIPTIONS

Pin Name	Type	Description
AGND/DGND	Ground	Analog and Digital ground.
A(TIP)	Output	Output of A(TIP) power amplifier.
BGND	Ground	Battery (power) ground.
B(RING)	Output	Output of B(RING) power amplifier.
C2–C1	Inputs	Decoder. TTL compatible. C2 is MSB and C1 is LSB.
CAS	Capacitor	Anti-Saturation pin for capacitor to filter reference voltage when operating in anti-saturation region.
D3–D1	Input	Relay Driver Control. D3–D1 control the relay drivers RYOUT1, RYOUT2, and RYOUT3. Logic Low on D1 activates the RYOUT1 relay driver. Logic Low on D2 activates the RYOUT2 relay driver. Logic Low on D3 activates the RYOUT3 relay driver. TTL compatible.
DA	Input	Ring-trip negative. Negative input to ring-trip comparator.
DB	Input	Ring-trip positive. Positive input to ring-trip comparator.
DET	Output	Switchhook detector. Logic Low indicates that selected detector is tripped. Logic inputs C2–C1, E1, and E0 select the detector. Open-collector with a built-in 15 kΩ pull-up resistor.
HPA	Capacitor	High-Pass Filter Capacitor. A(TIP) side of high-pass filter capacitor.
HPB	Capacitor	High-Pass Filter Capacitor. B(RING) side of high-pass filter capacitor.
NC	—	No Connect. Pin not internally connected.
RD	Resistor	Detect resistor. Detector threshold set and filter pin.
RDC	Resistor	DC feed resistor. Connection point for the DC feed current programming network. The other end of the network connects to the receiver summing node (RSN).
RINGOUT	Output	Ring Relay Driver. Open-collector driver with emitter internally connected to BGND.
RSN	Input	Receive Summing Node. The metallic current (both AC and DC) between A(TIP) and B(RING) is equal to 500 times the current into this pin. The networks that program receive gain, two-wire impedance, and feed resistance all connect to this node.
RYOUT1	Output	Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND.
RYOUT2	Output	Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND (PLCC only).
RYOUT3	Output	Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND (PLCC only).
TMG	—	Thermal Management. External resistor connects between this pin and VBAT to offload power from SLIC.
VBAT	Battery	Battery supply and connection to substrate.
VBREF	—	This is an Zarlink reserved pin and must always be connected to the VBAT pin.
VCC	Power	+5 V power supply.
VTX	Output	Transmit Audio. This output is a 0.50 gain version of the A(TIP) and B(RING) metallic voltage. VTX also sources the two-wire input impedance programming network.

ABSOLUTE MAXIMUM RATINGS

Storage temperature -55°C to $+150^{\circ}\text{C}$

V_{CC} with respect to AGND/DGND -0.4 V to $+7.0\text{ V}$

V_{BAT} with respect to AGND/DGND:

Continuous $+0.4\text{ V}$ to -70 V

10 ms $+0.4\text{ V}$ to -75 V

BGND with respect to AGND/DGND $+3\text{ V}$ to -3 V

A(TIP) or B(RING) to BGND:

Continuous V_{BAT} to $+1\text{ V}$

10 ms ($f = 0.1\text{ Hz}$) -70 V to $+5\text{ V}$

1 μs ($f = 0.1\text{ Hz}$) -80 V to $+8\text{ V}$

250 ns ($f = 0.1\text{ Hz}$) -90 V to $+12\text{ V}$

Current from A(TIP) or B(RING) $\pm 150\text{ mA}$

RINGOUT/RYOUT1,2,3 current 50 mA

RINGOUT/RYOUT1,2,3 voltage BGND to $+7\text{ V}$

RINGOUT/RYOUT1,2,3 transient BGND to $+10\text{ V}$

DA and DB inputs

Voltage on ring-trip inputs V_{BAT} to 0 V

Current into ring-trip inputs $\pm 10\text{ mA}$

C2–C1 and D3–D1

Input voltage -0.4 V to $V_{\text{CC}} + 0.4\text{ V}$

Maximum power dissipation, continuous,

$T_A = 70^{\circ}\text{C}$, No heat sink (See note)

In 32-pin PLCC package 1.7 W

Thermal Data: θ_{JA}

In 32-pin PLCC package 43°C/W typ

ESD immunity/pin (HBM) 1500 V

Note: Thermal limiting circuitry on chip will shut down the circuit at a junction temperature of about 165°C . Continuous operation above 145°C junction temperature may degrade device reliability.

Stresses above those listed under "Absolute Maximum Ratings" can cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

The operating ranges define those limits between which the functionality of the device is guaranteed.

Commercial (C) Devices

Ambient temperature 0°C to +70°C*

V_{CC} 4.75 V to 5.25 V

V_{BAT} -19 V to -58 V

AGND/DGND 0 V

BGND with respect to

AGND/DGND -100 mV to +100 mV

Load resistance on VTX to ground 20 kΩ min

**Zarlink guarantees the performance of this device over commercial (0 to 70°C) and industrial (-40 to 85°C) temperature ranges by conducting electrical characterization over each range and by conducting a production test with single insertion coupled to periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications Equipment.*

Package Assembly

The standard (non-green) package devices are assembled with industry-standard mold compounds, and the leads possess a tin/lead (Sn/Pb) plating. These packages are compatible with conventional SnPb eutectic solder board assembly processes. The peak soldering temperature should not exceed 225°C during printed circuit board assembly.

The green package devices are assembled with enhanced environmental compatible lead (Pb), halogen, and antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer lead-free board assembly processes. The peak soldering temperature should not exceed 245°C during printed circuit board assembly.

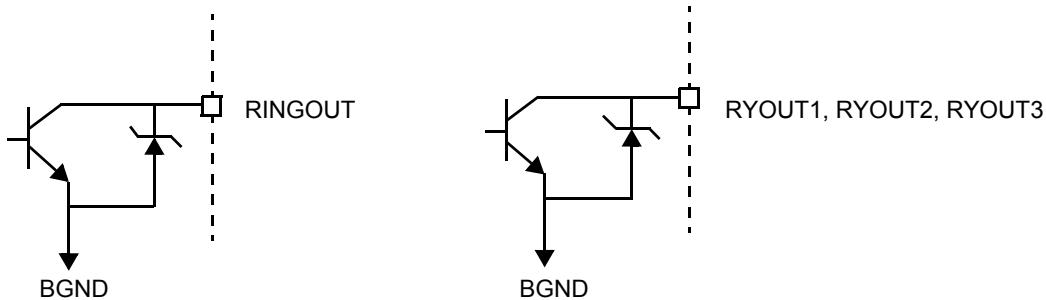
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile

ELECTRICAL CHARACTERISTICS

Description	Test Conditions (See Note 1)	Min	Typ	Max	Unit	Note
Transmission Performance						
2-wire return loss	200 Hz to 3.4 kHz	26			dB	1, 4
Analog output (VTX) impedance			3	20	Ω	4
Analog (VTX) output offset voltage		-50		+50	mV	
Overload level, 2-wire and 4-wire	Active state	2.5			Vpk	2a
Overload level	On hook, $R_{LAC} = 600 \Omega$	0.77			Vrms	2b
THD, Total Harmonic Distortion	0 dBm +7 dBm		-64 -55	-50 -40	dB	5
THD, On hook	0 dBm, $R_{LAC} = 600 \Omega$			-36		
Longitudinal Capability (See Test Circuit D)						
Longitudinal to metallic L-T, L-4 balance	200 Hz to 1 kHz					
	0°C to +70°C	-1*	52			4
	0°C to +70°C	-2	63			
	-40°C to +85°C	-1	50			
	-40°C to +85°C	-2	58			
	1 kHz to 3.4 kHz					4
	0°C to +70°C	-1*	52			
	0°C to +70°C	-2	58			
Longitudinal signal generation 4-L	-40°C to +85°C	-1	50			4
	-40°C to +85°C	-2	53			4
Longitudinal current per pin (A or B)	200 Hz to 3.4 kHz	40				
Longitudinal impedance at A or B	Active state	20	27	35	mArms	8
Idle Channel Noise						
C-message weighted noise	$R_L = 600 \Omega$ $R_L = 600 \Omega$	0°C to +70°C -40°C to +85°C		7	+10 +12	dB _{rnc}
Psophometric weighted noise	$R_L = 600 \Omega$ $R_L = 600 \Omega$	0°C to +70°C -40°C to +85°C		-83	-80 -78	dB _{mp}
Insertion Loss and Balance Return Signal (See Test Circuits A and B)						
Gain accuracy 4- to 2-wire	0 dBm, 1 kHz	-0.20	0	+0.20	dB	
Gain accuracy 2- to 4-wire, 4- to 4-wire	0 dBm, 1 kHz	-6.22	-6.02	-5.82		
Gain accuracy, 4- to 2-wire	On hook	-0.35		+0.35		4
Gain accuracy, 2- to 4-wire, 4- to 4-wire	On hook	-6.37	-6.02	-5.67		
Gain accuracy over frequency	300 to 3.4 kHz relative to 1 kHz	-0.15		+0.15		
Gain tracking	+3 dBm to -55 dBm relative to 0 dBm	-0.15		+0.15		
Gain tracking On hook	0 dBm to -37 dBm +3 dBm to 0 dBm	-0.15 -0.35		+0.15 +0.35		
Group delay	0 dBm, 1 kHz		4		μ s	4, 7

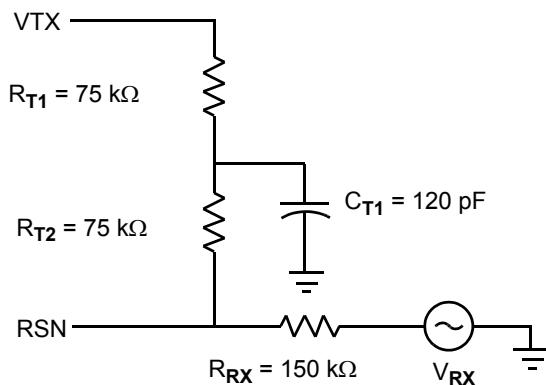
Note:

* Performance Grade


ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Min	Typ	Max	Unit	Note
Line Characteristics						
I_L , Short Loops, Active state	$R_{LDC} = 600 \Omega$	20	23	26		
I_L , Long Loops, Active state	$R_{LDC} = 1930 \Omega$, $BAT = -42.75 V$, $T_A = 25^\circ C$	18	19			
I_L , Accuracy, Standby state	$I_L = \frac{ BAT - 3 V}{R_L + 400}$ $T_A = 25^\circ C$	0.7 I_L	I_L	1.3 I_L	mA	
	Constant-current region	18	30			
I_L , Loop current, Disconnect state	$R_L = 0$			100	μA	
I_{LIM}	Active, A and B to ground			85	120	mA
V _{BAT} , Open Circuit voltage	$V_{BAT} = -52 V$	-42.75	-44		V	
Power Supply Rejection Ratio ($V_{RIPPLE} = 100 mVrms$), Active Normal State						
V_{CC}	50 Hz to 3.4 kHz	30	40		dB	5
V_{BAT}	50 Hz to 3.4 kHz	28	50			
Effective internal resistance	CAS pin to V_{BAT}	85	170	255	$k\Omega$	4
Power Dissipation						
On hook, Disconnect state			25	70	mW	
On hook, Standby state			35	100		
On hook, Active state			125	270		
Off hook, Standby state	$R_L = 600 \Omega$		860	1200		
Off hook, Active state	$R_L = 300 \Omega$, $R_{TMG} = 2350 \Omega$		450	800		
Supply Currents, Battery = -48V						
I_{CC} , On-hook V_{CC} supply current	Disconnect state Standby state Active state, $BAT = -48 V$		1.7 2.2 6.3	4.0 4.0 8.5	mA	
I_{BAT} , On-hook V_{BAT} supply current	Disconnect state Standby state Active state, $BAT = -48 V$		0.25 0.55 2.8	1.0 1.5 4.8		
RFI Rejection						
RFI rejection	100 kHz to 30 MHz, (See Figure F)			1.0	mVrms	4
Receive Summing Node (RSN)						
RSN DC voltage	$I_{RSN} = 0 mA$		0		V	4
RSN impedance	200 Hz to 3.4 kHz		10	20	Ω	
Logic Inputs (C2-C1 and D3-D1)						
V_{IH} , Input High voltage		2.0			V	
V_{IL} , Input Low voltage				0.8		
I_{IH} , Input High current		-75		40	μA	
I_{IL} , Input Low current		-400				
Logic Output (DET)						
V_{OL} , Output Low voltage	$I_{OUT} = 0.3 mA$, 15 $k\Omega$ to V_{CC}			0.40	V	
V_{OH} , Output High voltage	$I_{OUT} = -0.1 mA$, 15 $k\Omega$ to V_{CC}	2.4				
Ring-Trip Detector Input (DA, DB)						
Bias current		-500	-50		nA	
Offset voltage	Source resistance = 2 $M\Omega$	-50	0	+50	mV	6

ELECTRICAL CHARACTERISTICS (continued)


Description	Test Conditions (See Note 1)	Min	Typ	Max	Unit	Note
Loop Detector						
On threshold	$R_D = 35.4 \text{ k}\Omega$	11.5		17.3	mA	
Off threshold	$R_D = 35.4 \text{ k}\Omega$	9.4		14.1		
Hysteresis	$R_D = 35.4 \text{ k}\Omega$	0		4.4		
Relay Driver Output (RINGOUT, RYOUT1, RYOUT2, RYOUT3)						
On voltage	$I_{OL} = 40 \text{ mA}$		+0.3	+0.7	V	
Off leakage	$V_{OH} = +5 \text{ V}$			100	μA	
Zener breakdown	$I_Z = 100 \mu\text{A}$	6	7.2		V	
Zener On voltage	$I_Z = 30 \text{ mA}$		10			

RELAY DRIVER SCHEMATICS

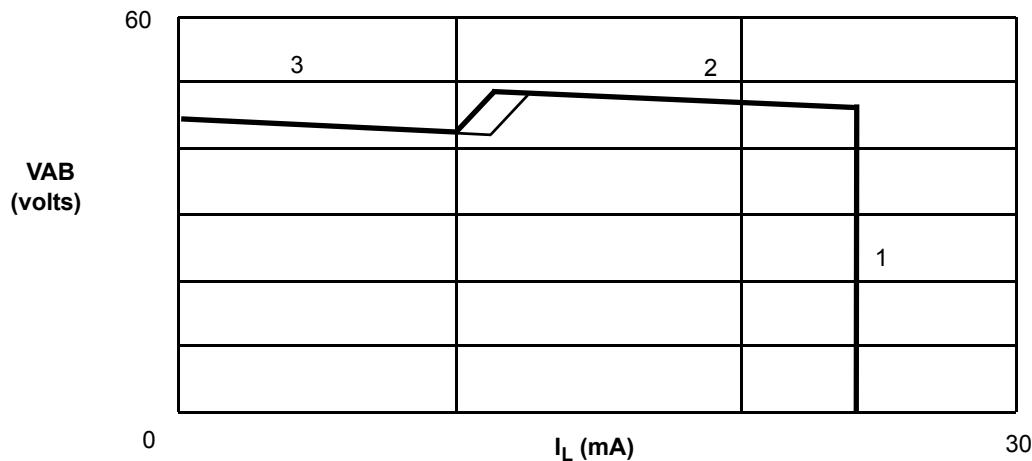
Notes:

1. Unless otherwise noted, test conditions are $BAT = -52 \text{ V}$, $V_{CC} = +5 \text{ V}$, $R_L = 600 \Omega$, $R_{DC1} = R_{DC2} = 27.17 \text{ k}\Omega$, $R_{TMG} = 2350 \Omega$, $R_D = 35.4 \text{ k}\Omega$, no fuse resistors, $C_{HP} = 0.22 \mu\text{F}$, $C_{DC} = 0.1 \mu\text{F}$, $C_{CAS} = 0.33 \mu\text{F}$, $D1 = 1N400x$, two-wire AC input impedance is a 600Ω resistance synthesized by the programming network shown below.

2. a. Overload level is defined when $THD = 1\%$.
b. Overload level is defined when $THD = 1.5\%$.
3. Balance return signal is the signal generated at V_{TX} by V_{RX} . This specification assumes that the two-wire, AC-load impedance matches the programmed impedance.
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.
5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.
6. Tested with 0Ω source impedance. $2 \text{ M}\Omega$ is specified for system design only.
7. Group delay can be greatly reduced by using a Z_T network such as that shown in Note 1. The network reduces the group delay to less than $2 \mu\text{s}$ and increases 2WRL. The effect of group delay on linecard performance also may be compensated for by synthesizing complex impedance with the QSLAC™ or DSLAC™ device.
8. Minimum current level guaranteed not to cause a false loop detect.

Table 1. SLIC Decoding

State	C2	C1	Two-Wire Status	\overline{DET} Output
0	0	0	Disconnect	Ring trip
1	0	1	Ringing	Ring trip
2	1	0	Active	Loop detector
3	1	1	Standby	Loop detector


Table 2. User-Programmable Components

$Z_T = 250(Z_{2WIN} - 2R_F)$	Z_T is connected between the VTX and RSN pins. The fuse resistors are R_F , and Z_{2WIN} is the desired 2-wire AC input impedance. When computing Z_T , the internal current amplifier pole and any external stray capacitance between VTX and RSN must be taken into account.
$Z_{RX} = \frac{Z_L}{G_{42L}} \bullet \frac{500Z_T}{Z_T + 250(Z_L + 2R_F)}$	Z_{RX} is connected from VRX to RSN. Z_T is defined above, and G_{42L} is the desired receive gain.
$R_{DC1} + R_{DC2} = \frac{1250}{I_{LOOP}}$ $C_{DC} = 1.5 \text{ ms} \bullet \frac{R_{DC1} + R_{DC2}}{R_{DC1} \bullet R_{DC2}}$	R_{DC1} , R_{DC2} , and C_{DC} form the network connected to the R_{DC} pin. R_{DC1} and R_{DC2} are approximately equal. I_{LOOP} is the desired loop current in the constant-current region.
$R_{D_{ON}} = \frac{510}{I_T}$, $R_{D_{OFF}} = \frac{415}{I_T}$, $C_D = \frac{0.5 \text{ ms}}{R_D}$	R_D and C_D form the network connected from R_D to AGND/DGND and I_T is the threshold current between on hook and off hook.
$C_{CAS} = \frac{1}{3.4 \bullet 10^5 \pi f_c}$	C_{CAS} is the regulator filter capacitor and f_c is the desired filter cut-off frequency.
$I_{STANDBY} = \frac{ V_{BAT} - 3 \text{ V}}{400 \Omega + R_L}$	Standby loop current (resistive region).

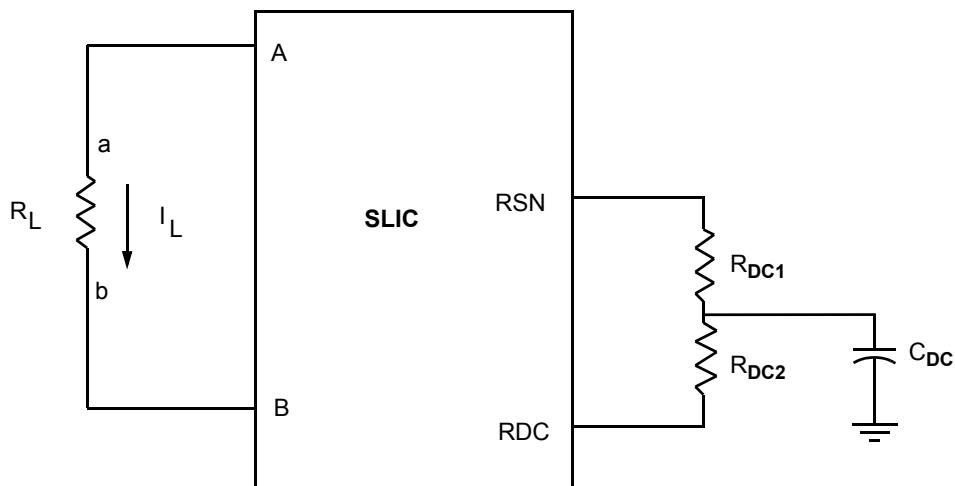
Thermal Management Equations (Normal Active and Tip Open States)

$R_{TMG} \geq \left(\frac{ V_{BAT} - 6 \text{ V}}{I_{LOOP}} - 70 \Omega \right)$	R_{TMG} is connected from TMG to VBAT and saves power within the SLIC in Active and Disconnect state constant-currents only.
$P_{RTMG} = \frac{(V_{BAT} - 6 \text{ V} - (I_L \bullet R_L))^2}{(R_{TMG} + 70 \Omega)^2} \bullet R_{TMG}$	Power dissipated in the TMG resistor, R_{TMG} , during Active and Disconnect states.
$P_{SLIC} = V_{BAT} \bullet I_L - P_{RTMG} - R_L(I_L)^2 + 0.12 \text{ W}$	Power dissipated in the SLIC while in Active and Disconnect states.

DC FEED CHARACTERISTICS

$$R_{DC} = R_{DC1} + R_{DC2} = 54.34 \text{ k}\Omega$$

$$BAT = -48 \text{ V}$$

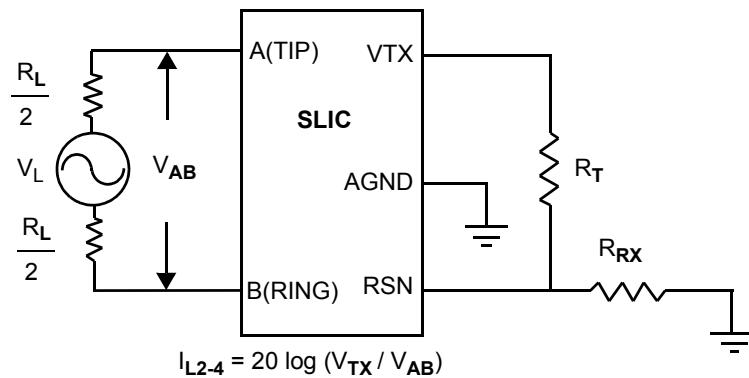

Notes:

$$1. V_{AB} = I_L R_{L'} = \frac{1250}{R_{DC}} R_{L'} \text{, where } R_{L'} = R_L + 2R_F$$

$$2. V_{AB} = 0.857(|V_{BAT}| + 3.3) - I_L \frac{R_{DC}}{300}$$

$$3. V_{AB} = 0.857(|V_{BAT}| + 1.2) - I_L \frac{R_{DC}}{300}$$

a. Load Line (Typical)



Feed current programmed by R_{DC1} and R_{DC2}

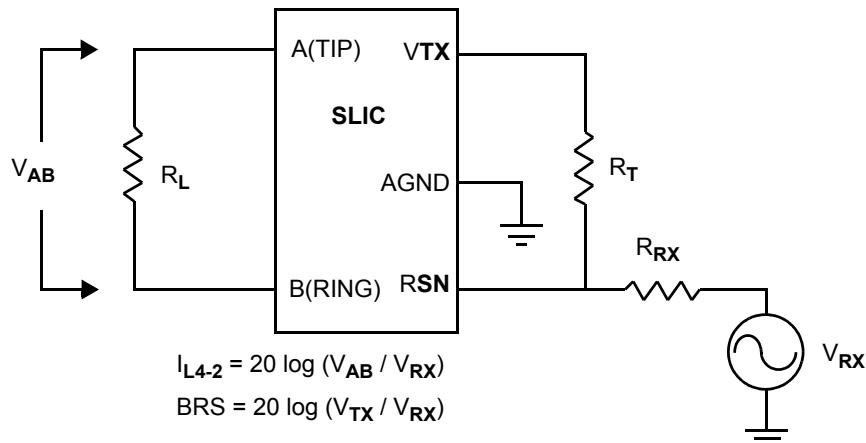
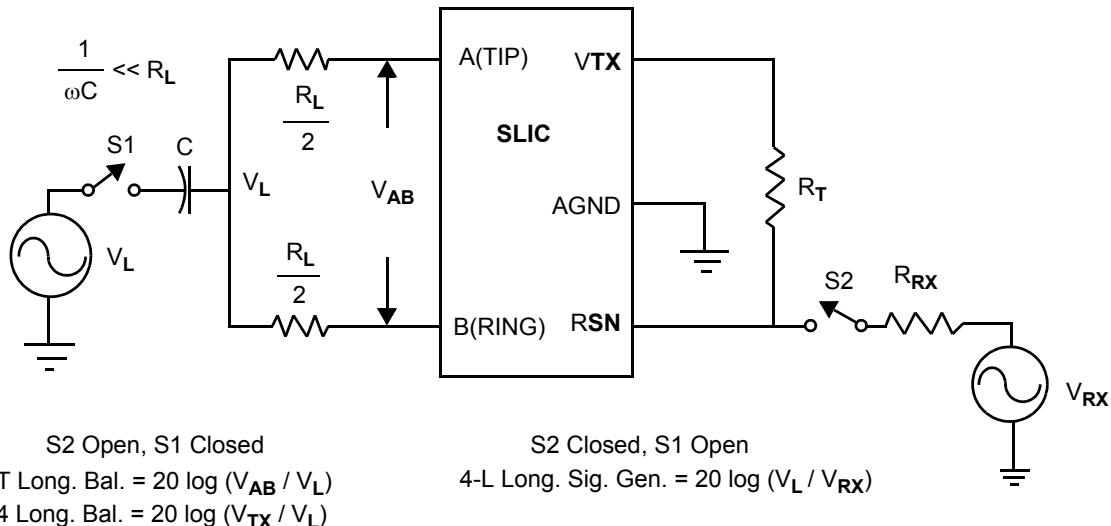
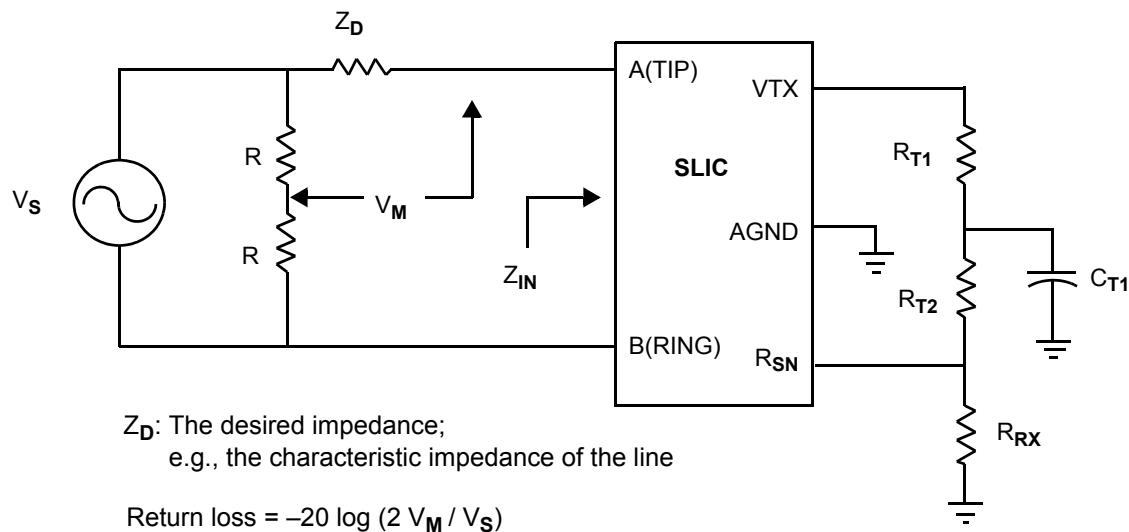
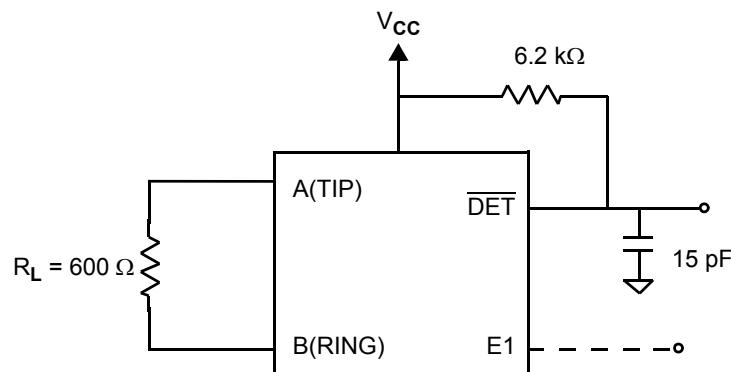
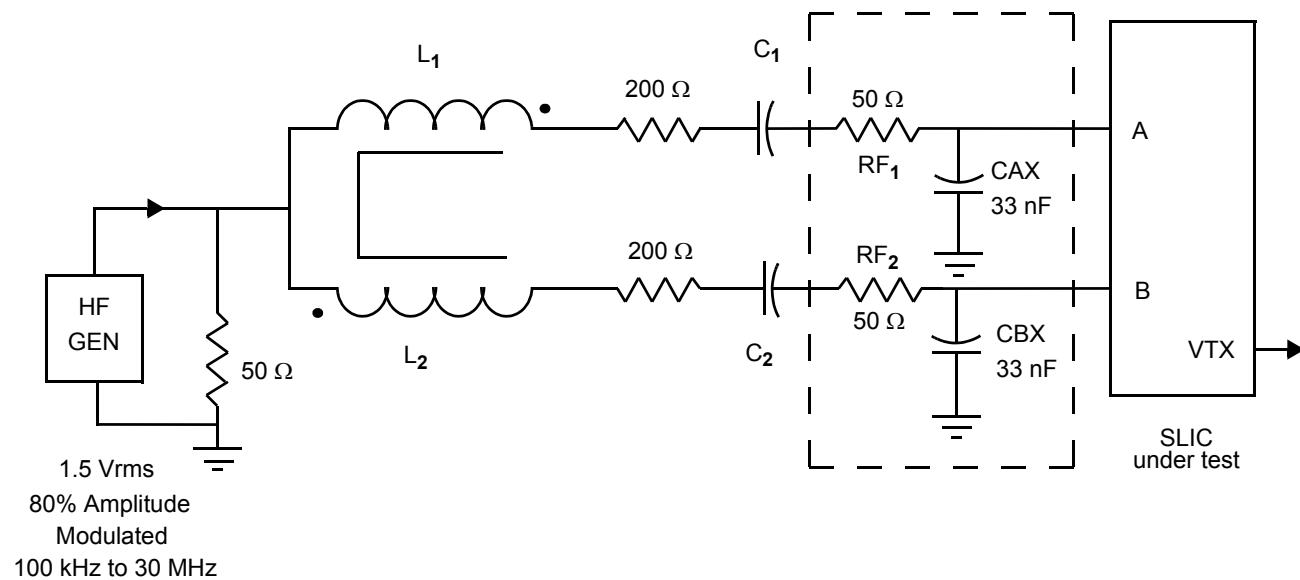
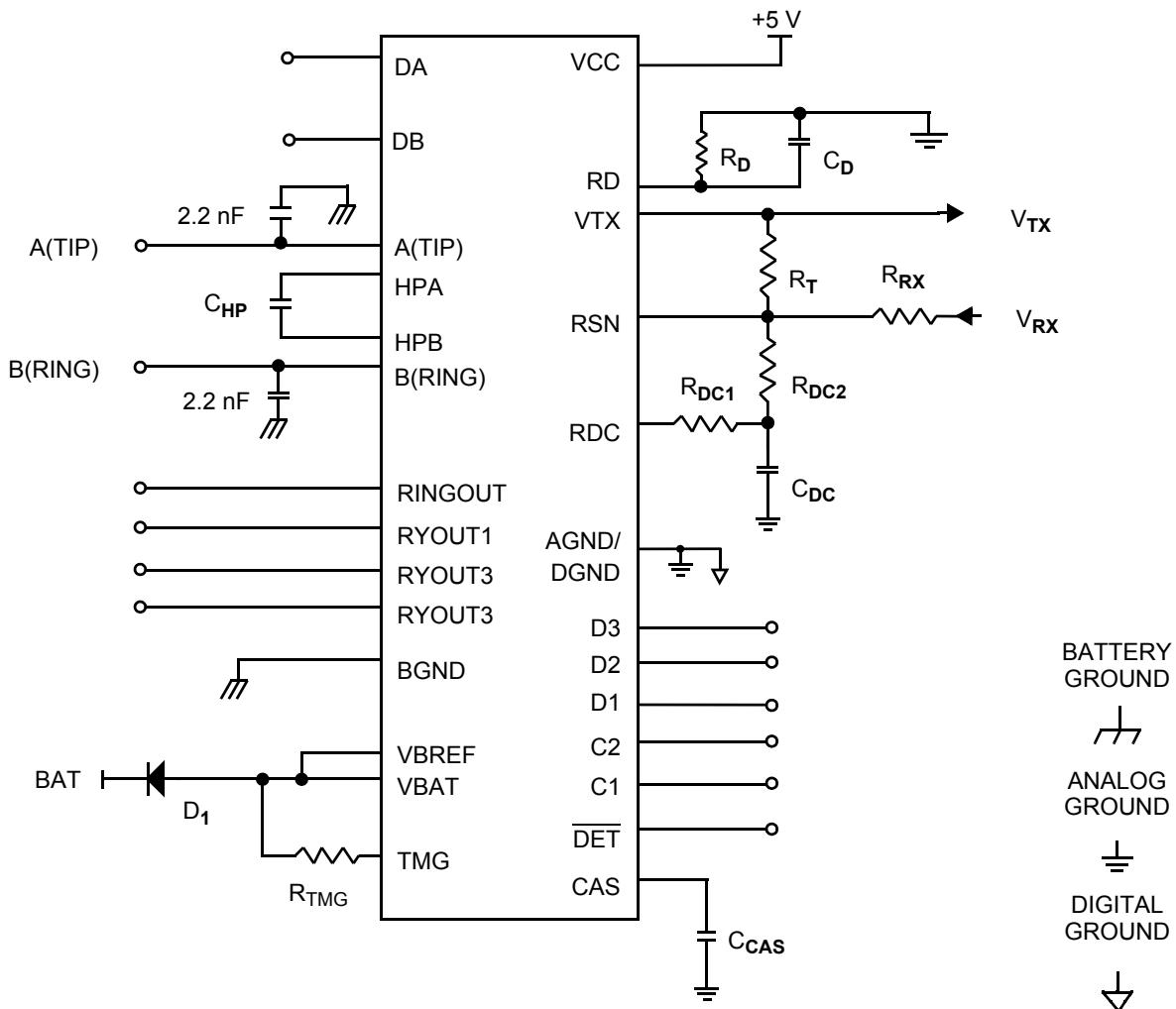

b. Feed Programming

Figure 1. DC Feed Characteristics

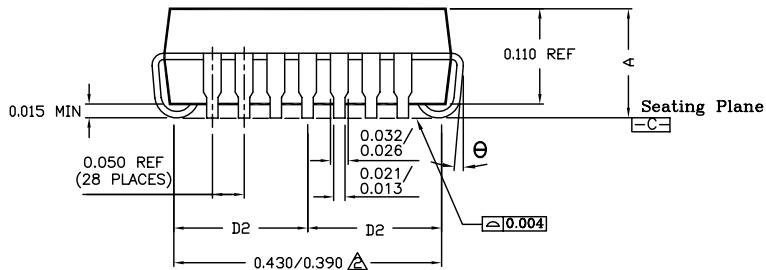
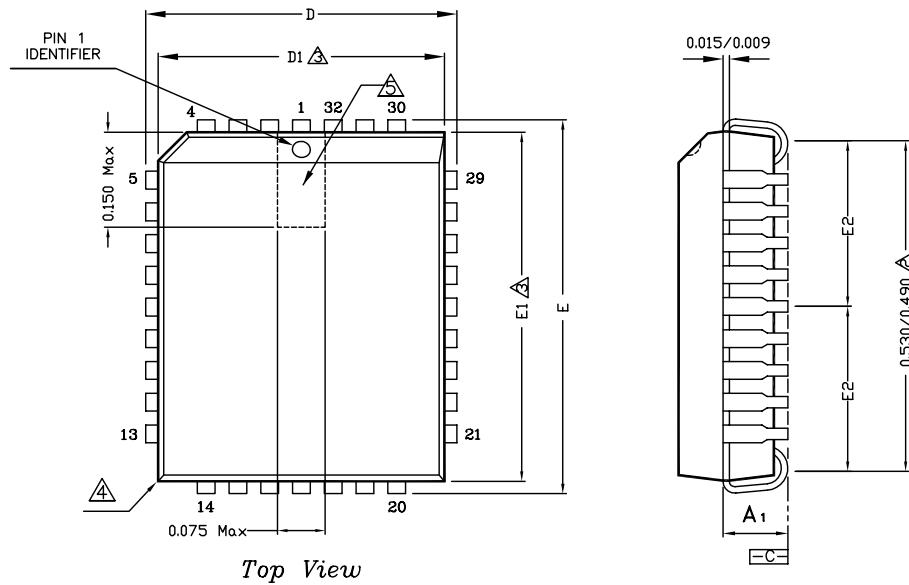

TEST CIRCUITS




A. Two- to Four-Wire Insertion Loss


B. Four- to Two-Wire Insertion Loss and Balance Return Signal

C. Longitudinal Balance

TEST CIRCUITS (continued)**D. Two-Wire Return Loss Test Circuit****E. Loop-Detector Switching****F. RFI Test Circuit**



TEST CIRCUITS (continued)

G. Le7920 Test Circuit

PHYSICAL DIMENSIONS

32-Pin PLCC

NOTES:

32-Pin PLCC			
JEDEC # MS-016			
Symbol	Min	Nom	Max
A	0.125	--	0.140
A1	0.075	0.090	0.095
D	0.485	0.490	0.495
D1	0.447	0.450	0.453
D2	0.205 REF		
E	0.585	0.590	0.595
E1	0.547	0.550	0.553
E2	0.255 REF		
Θ	0 deg	--	10 deg

- Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- To be measured at seating plan [- C -] contact point.
- Dimensions "D1" and "E1" do not include mold protrusion. Allowable mold protrusion is 0.010 inch per side. Dimensions "D" and "E" include mold mismatch and determined at the parting line; that is "D1" and "E1" are measured at the extreme material condition at the upper or lower parting line.
- Exact shape of this feature is optional.
- Details of pin 1 identifier are optional but must be located within the zone indicated.
- Sum of DAM bar protrusions to be 0.007 max per lead.
- Controlling dimension : Inch.
- Reference document : JEDEC MS-016

32-Pin PLCC

Note:

Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the device. Markings will vary with the mold tool used in manufacturing.

REVISION SUMMARY

Revision C to Revision D

- Minor changes were made to the datasheet style and format to conform to Zarlink standards.

Revision D to Revision E

- Absolute Maximum Ratings: Added ESD immunity specification.

Revision E to Revision F

- Added the 28-pin SOIC connection diagram and the SC option to the ordering information.

Revision F to Revision G

- The physical dimension (PL032) was added to the Physical Dimension section.

Revision G to Revision H

- Deleted the plastic DIP package and references to it.
- Updated the Pin Description table to correct inconsistencies.

Revision H to Revision I

- Updated device name from "Am7920" to "Le7920" throughout document.
- Absolute Maximum Ratings: Notes updated to standard.
- Operating Ranges: Temperature statement updated to standard.
- Updated "Sales Office Listing."
- Updated physical dimension drawings.

Revision I1 to Revision J1

- Added green package OPN to [Ordering Information, on page 3](#)
- Added [Package Assembly, on page 7](#)
- Updated 32-pin PLCC drawing in [Physical Dimensions, on page 17](#)
- Removed SOIC package information

Revision J1 to Revision J2

- Enhanced format of package drawing in [Physical Dimensions, on page 17](#)
- Added new headers/footers due to Zarlink purchase of Legerity on August 3, 2007

**For more information about all Zarlink products
visit our Web Site at
www.zarlink.com**

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I₂C components conveys a license under the Philips I₂C Patent rights to use these components in an I₂C System, provided that the system conforms to the I₂C Standard Specification as defined by Philips.

Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Zarlink Semiconductor Inc.

TECHNICAL DOCUMENTATION - NOT FOR RESALE