

High side smart power solid state relay

Features

Type	V _{DSS}	R _{DSS(on)}	I _{OUT}	V _{CC}
VN02N	60 V	0.4 Ω	6 A	26 V

- Output current (continuous): 6A @ T_c=25°C
- 5V logic level compatible input
- Thermal shutdown
- Under voltage shutdown
- Open drain diagnostic output
- Very low standby power dissipation

PENTAWATT

Description

The VN02N is a monolithic device made using STMicroelectronics VIPower technology, intended for driving resistive or inductive loads with one side grounded. Built-in thermal shutdown protects the chip from over temperature and short circuit.

The input control is 5V logic level compatible. The open drain diagnostic output indicates open circuit (no load) and over temperature status.

Table 1. Device summary

Package	Order codes
PENTAWATT	VN02N

Contents

1	Block diagram and pin description	5
2	Electrical specifications	6
2.1	Absolute maximum ratings	6
2.2	Thermal data	7
2.3	Electrical characteristics	7
2.4	Electrical characteristics curves	10
3	Application information	11
3.1	Functional description	12
3.2	Protecting the device against reverse battery	12
4	Package and packing information	13
4.1	ECOPACK® packages	13
4.2	PENTAWATT mechanical data	13
5	Revision history	15

List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	6
Table 3.	Thermal data.	7
Table 4.	Power	7
Table 5.	Switching ($V_{CC}=13V$)	7
Table 6.	Logic inputs.	8
Table 7.	Protections and diagnostics	8
Table 8.	Truth table.	8
Table 9.	PENTAWATT mechanical data	14
Table 10.	Document revision history	15

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	5
Figure 3.	Current and voltage conventions	6
Figure 4.	Waveforms	9
Figure 5.	Over current test circuit.	9
Figure 6.	$R_{DS(on)}$ vs junction temperature	10
Figure 7.	$R_{DS(on)}$ vs supply voltage	10
Figure 8.	$R_{DS(on)}$ vs output current	10
Figure 9.	Input voltages vs junction temperature	10
Figure 10.	Output current derating	10
Figure 11.	Open load vs junction temperature	10
Figure 12.	Typical application circuit with a schottky diode for reverse supply protection	11
Figure 13.	Typical application circuit with separate signal ground	11
Figure 14.	PENTAWATT package dimensions	13

1 Block diagram and pin description

Figure 1. Block diagram

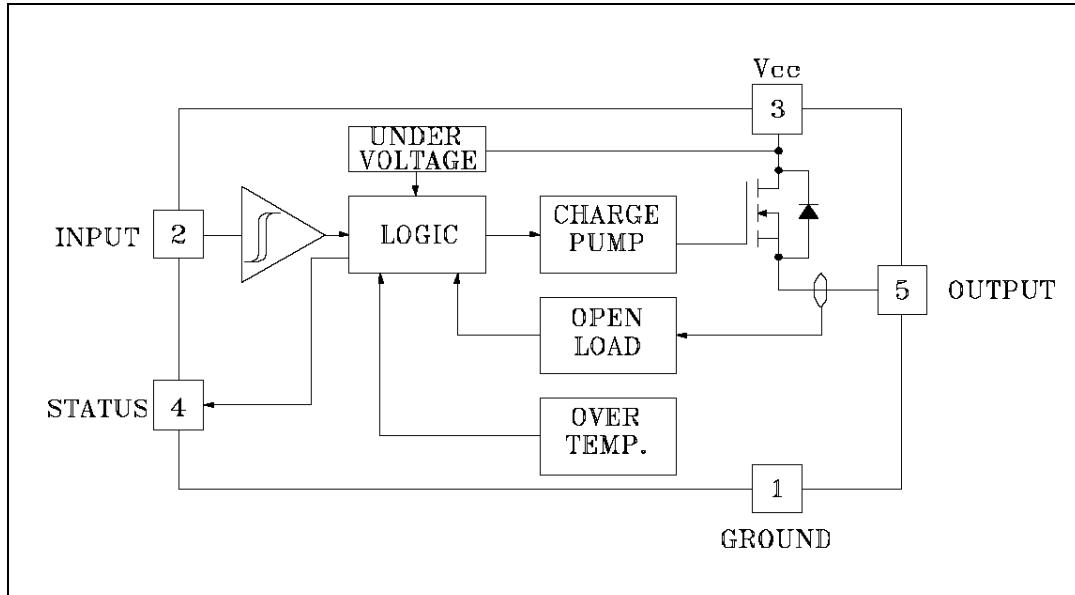
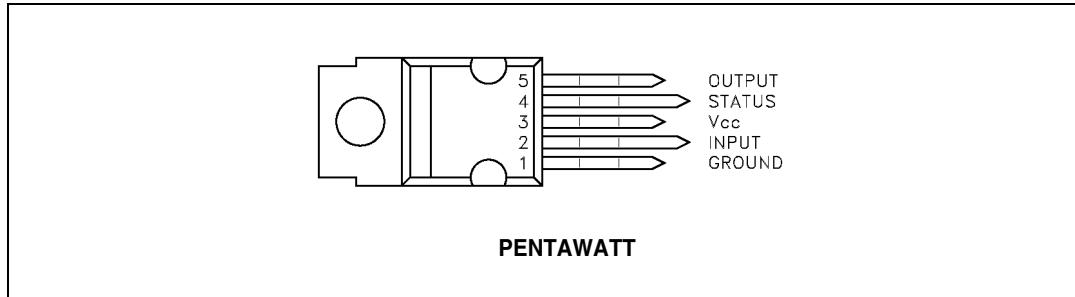
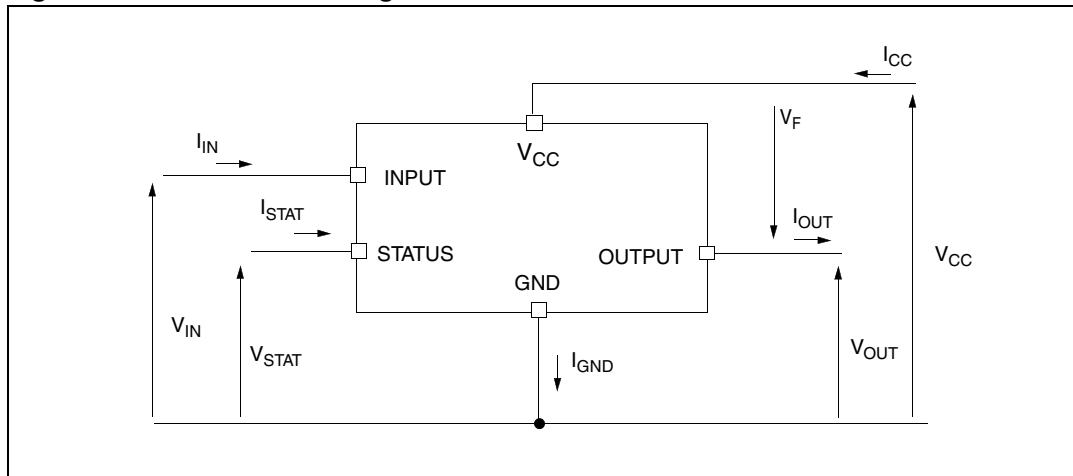




Figure 2. Configuration diagram (top view)

2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the “Absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality document.

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$V_{(BR)DSS}$	Drain-Source breakdown voltage	60	V
I_{OUT}	Output current (cont.)	6	A
I_R	Reverse output current	-6	A
I_{IN}	Input current	± 10	mA
$-V_{CC}$	Reverse supply voltage	-4	V
I_{STAT}	Status current	± 10	mA
V_{ESD}	Electrostatic discharge (1.5 k Ω 100 pF)	2000	V
P_{tot}	Power dissipation at $T_c \leq 25$ °C	29	W
T_j	Junction operating temperature	-40 to 150	°C
T_{stg}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Max. value	Unit
$R_{thj-case}$	Thermal resistance junction-case	4.35	°C/W
$R_{thj-amb}$	Thermal resistance junction-ambient	60	°C/W

2.3 Electrical characteristics

Values specified in this section are for $V_{CC} = 13V$; $-40^{\circ}C < T_j < 125^{\circ}C$, unless otherwise stated.

Table 4. Power

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{CC}	Supply voltage		7		26	V
R_{on}	On state resistance	$I_{OUT} = 3 A$ $I_{OUT} = 3 A T_j = 25^{\circ}C$			0.8 0.4	Ω Ω
I_S	Supply current	Off state $T_j \geq 25^{\circ}C$ On state			50 15	μA mA

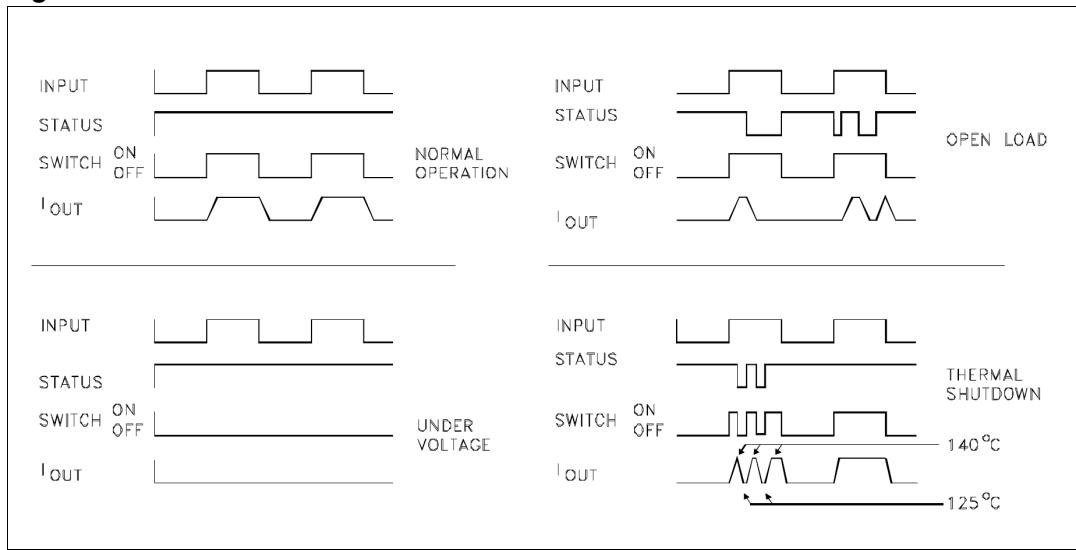
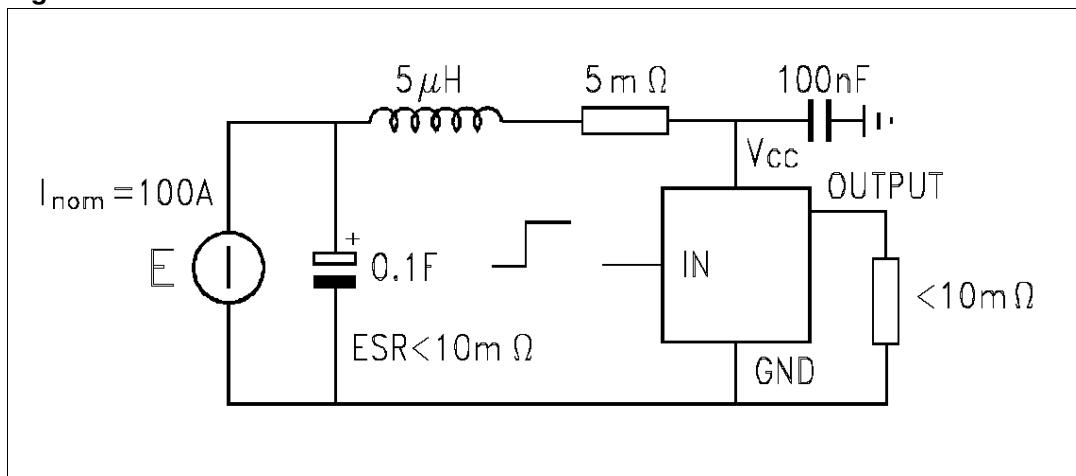
Table 5. Switching ($V_{CC}=13V$)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$	Turn-on delay time of output current	$I_{OUT} = 3 A$ resistive load Input rise time $< 0.1 \mu s$ $T_j=25^{\circ}C$		10		μs
t_r	Rise time of output current	$I_{OUT} = 3 A$ resistive load Input rise time $< 0.1 \mu s$ $T_j=25^{\circ}C$		15		μs
$t_{d(off)}$	Turn-off delay time of output current	$I_{OUT} = 3 A$ Resistive load Input rise time $< 0.1 \mu s$ $T_j=25^{\circ}C$		15		μs
t_f	Fall time of output current	$I_{OUT} = 3 A$ resistive load Input rise time $< 0.1 \mu s$ $T_j=25^{\circ}C$		6		μs
$dV_{OUT}/dt_{(on)}$	Turn-on current slope	$I_{OUT} = 3 A$ $I_{OUT} = IOV$			0.5 2	$A/\mu s$ $A/\mu s$
$dV_{OUT}/dt_{(off)}$	Turn-off current slope	$I_{OUT} = 3 A$ $I_{OUT} = IOV$			2 4	$A/\mu s$ $A/\mu s$

Table 6. Logic inputs

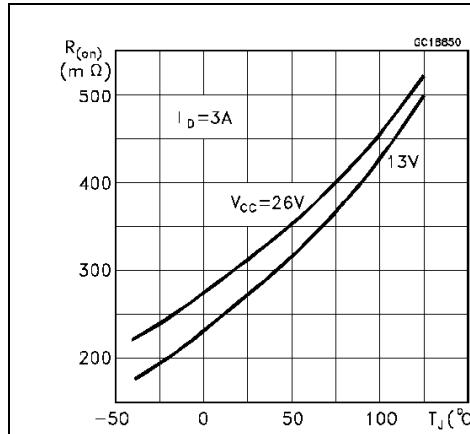
Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{IL}	Input low level voltage				0.8	V
$V_{IH}^{(1)}$	Input high level voltage		2			V
$V_{I(hyst.)}$	Input hysteresis voltage			0.5		V
I_{IN}	Input current	$V_{IN} = 5 \text{ V}$		250	500	μA
V_{ICL}	Input clamp voltage	$I_{IN} = 10 \text{ mA}$ $I_{IN} = -10 \text{ mA}$		6 -0.7		V V

1. The V_{IH} is internally clamped at 6V about. It is possible to connect this pin to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.

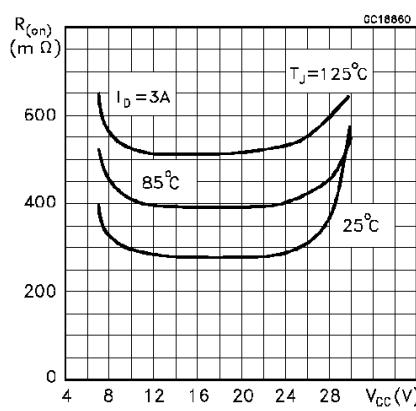


Table 7. Protections and diagnostics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{STAT}^{(1)}$	Status voltage output low	$I_{STAT} = 1.6 \text{ mA}$			0.4	V
V_{USD}	Under voltage shutdown			6.5		V
$V_{SCL}^{(1)}$	Status clamp voltage	$I_{STAT} = 10 \text{ mA}$ $I_{STAT} = -10 \text{ mA}$		6 -0.7		V V
t_{SC}	Switch-off time in short circuit condition at start-up	$R_{LOAD} < 10 \text{ m}\Omega$ $T_c = 25 \text{ }^\circ\text{C}$		1.5	5	ms
I_{ov}	Over current	$R_{LOAD} < 10 \text{ m}\Omega$ $-40 \leq T_c \leq 125 \text{ }^\circ\text{C}$			28	A
I_{AV}	Average current in short circuit	$R_{LOAD} < 10 \text{ m}\Omega$ $T_c = 85 \text{ }^\circ\text{C}$		0.9		A
I_{OL}	Open load current level		5		70	mA
T_{TSD}	Thermal shutdown temperature		140			$^\circ\text{C}$
T_R	Reset temperature		125			$^\circ\text{C}$

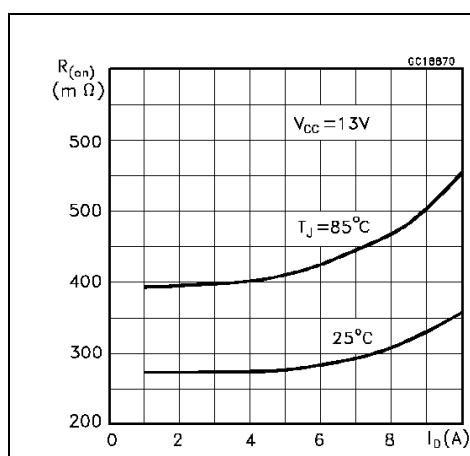
1. Status determination > 100 μs after the switching edge.

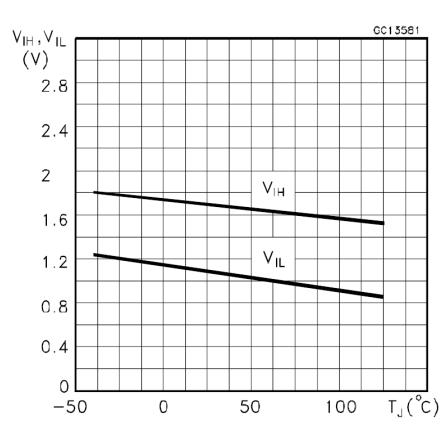

Table 8. Truth table

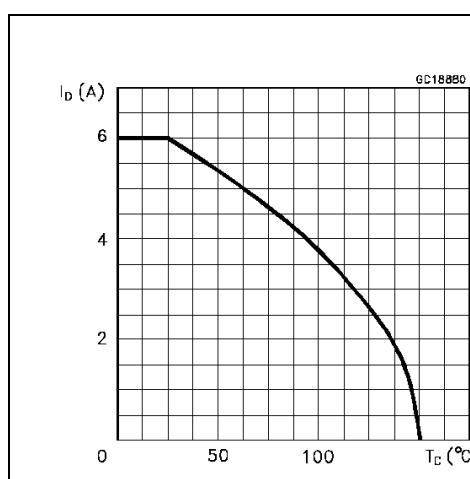
Conditions	Input	Output	Diagnostic
Normal operation	L	L	H
	H	H	H
Open circuit (no load)	H	H	L
Over-temperature	H	L	L
Under-voltage	X	L	H


Figure 4. Waveforms**Figure 5. Over current test circuit**

2.4 Electrical characteristics curves


Figure 6. $R_{DS(on)}$ vs junction temperature


Figure 7. $R_{DS(on)}$ vs supply voltage


Figure 8. $R_{DS(on)}$ vs output current

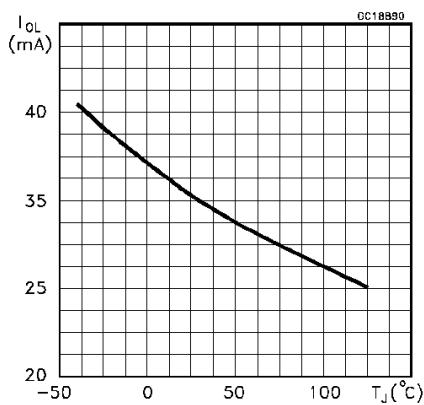

Figure 9. Input voltages vs junction temperature

Figure 10. Output current derating

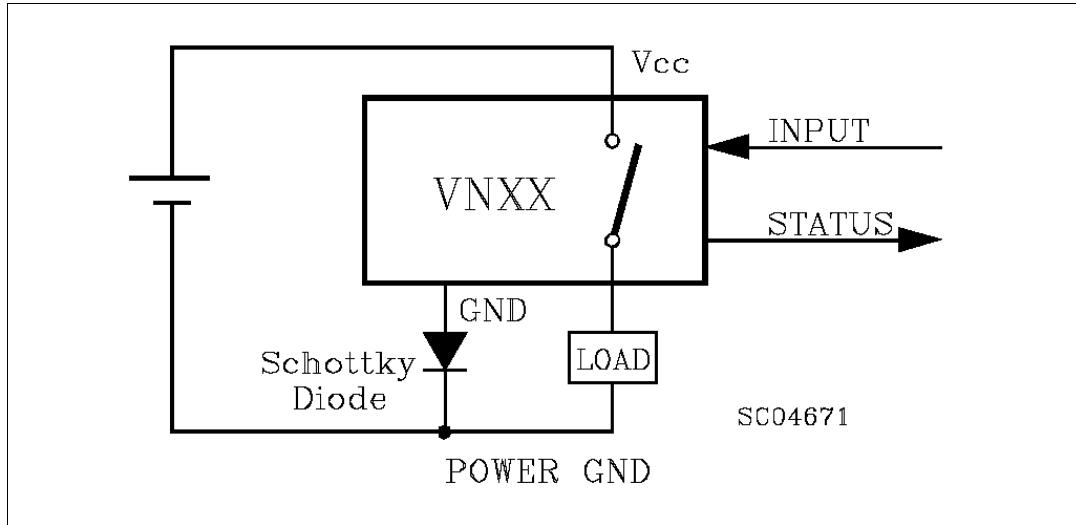
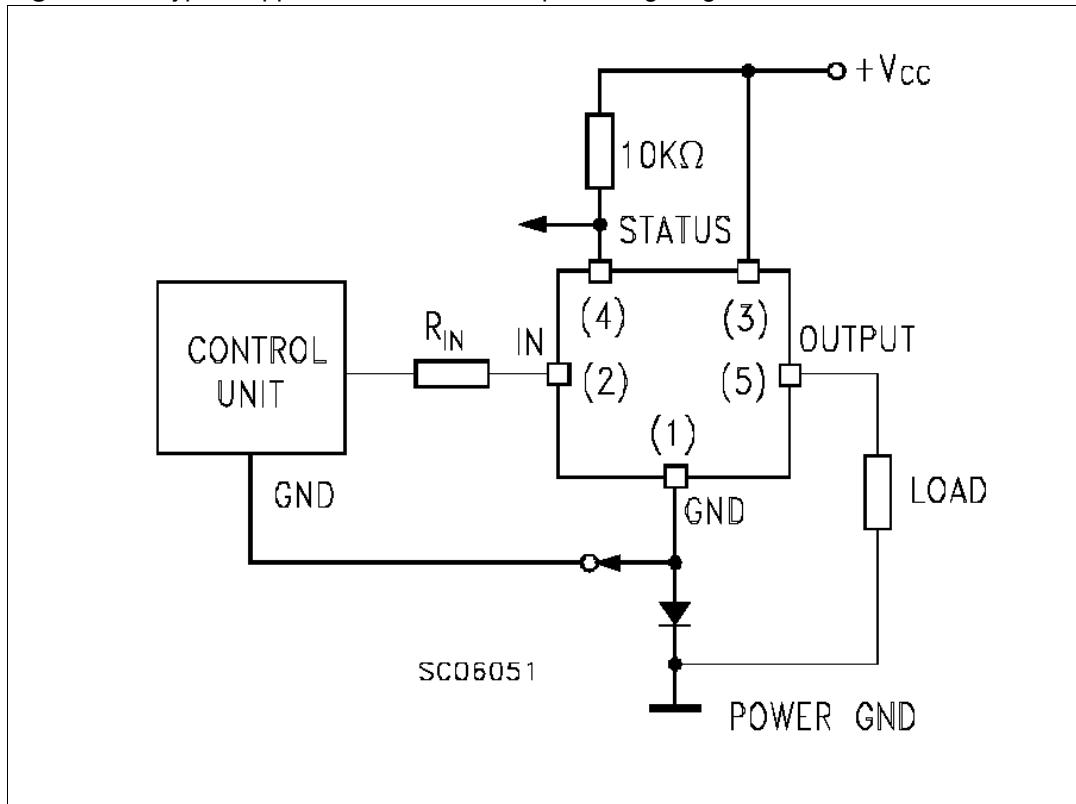


Figure 11. Open load vs junction temperature



3 Application information

Figure 12. Typical application circuit with a schottky diode for reverse supply protection

Figure 13. Typical application circuit with separate signal ground

3.1 Functional description

The device has a diagnostic output which indicates open circuit (no load) and over temperature conditions. The output signals are processed by internal logic. To protect the device against short circuit and over-current condition, the thermal protection turns the integrated Power MOS off at a minimum junction temperature of 140°C. When the temperature returns to about 125°C the switch is automatically turned on again. In short circuit conditions the protection reacts with virtually no delay, the sensor being located in the region of the die where the heat is generated.

3.2 Protecting the device against reverse battery

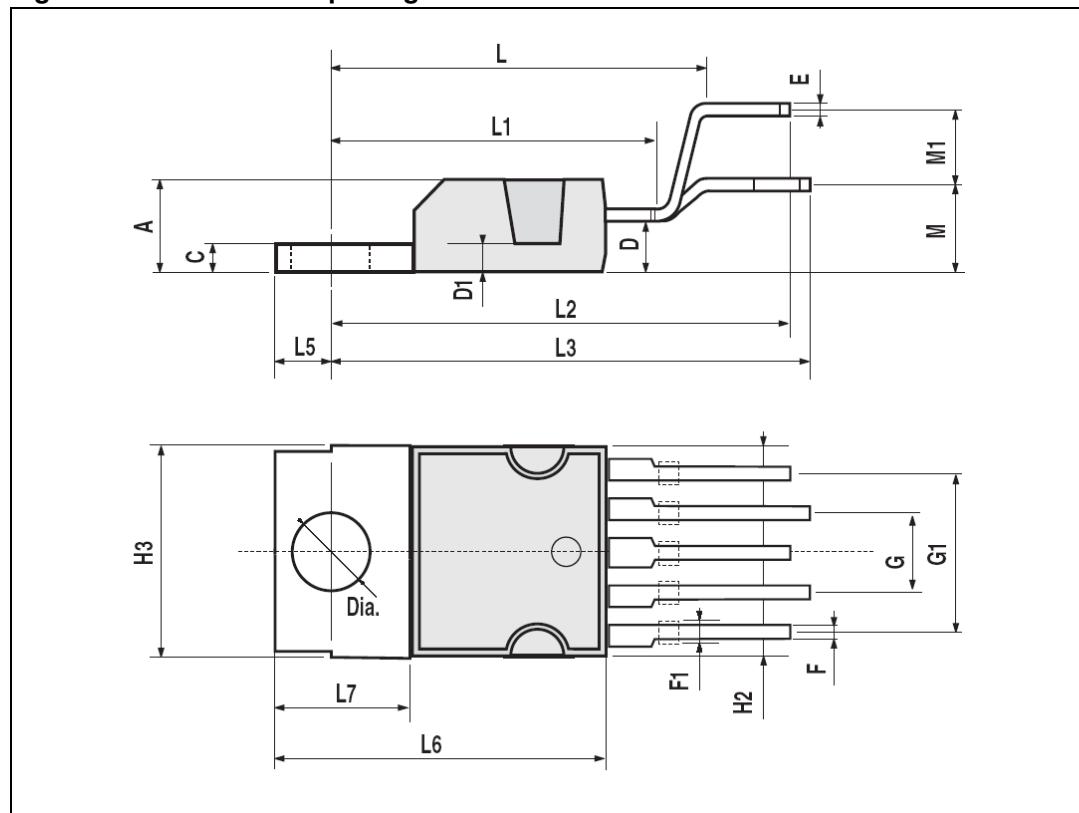
The simplest way to protect the device against a continuous reverse battery voltage (-26V) is to insert a Schottky diode between pin 1 (GND) and ground, as shown in the typical application circuit ([Figure 12](#)).

The consequences of the voltage drop across this diode are as follows:

- If the input is pulled to power GND, a negative voltage of $-V_F$ is seen by the device. (V_{IL} , V_{IH} thresholds and V_{STAT} are increased by V_F with respect to power GND).
- The undervoltage shutdown level is increased by V_F .

If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to node [1] (see [Figure 13](#)), which becomes the common signal GND for the whole control board. In this way no shift of V_{IH} , V_{IL} and V_{STAT} takes place and no negative voltage appears on the INPUT pin; this solution allows the use of a standard diode, with a breakdown voltage able to handle any ISO normalized negative pulses that occurs in the automotive environment.

4 Package and packing information


4.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. ECOPACK® packages are lead-free. The category of Second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at www.st.com.

4.2 PENTAWATT mechanical data

Figure 14. PENTAWATT package dimensions

Table 9. PENTAWATT mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A			4.8
C			1.37
D	2.4		2.8
D1	1.2		1.35
E	0.35		0.55
F	0.8		1.05
F1	1		1.4
G	3.2	3.4	3.6
G1	6.6	6.8	7
H2			10.4
H3	10.05		10.4
L		17.85	
L1		15.75	
L2		21.4	
L3		22.5	
L5	2.6		3
L6	15.1		15.8
L7	6		6.6
M		4.5	
M1		4	
Diam.	3.65		3.85

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
Sep-1994	1	Initial release.
07-Nov-2008	2	Document converted in corporate template. Added Section 4.1: ECOPACK® packages .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com