

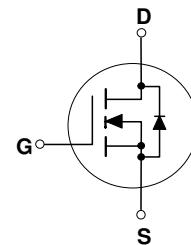
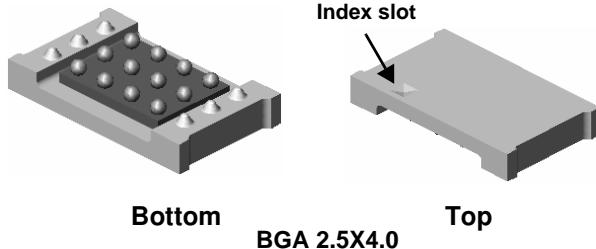
FDZ7296

30V N-Channel PowerTrench® BGA MOSFET

General Description

Combining Fairchild's advanced PowerTrench process with state-of-the-art BGA packaging, the FDZ7296 minimizes both PCB space and $R_{DS(ON)}$. This BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, and low $R_{DS(ON)}$.

Applications



- High-side Mosfet in DC-DC converters for Server and Notebook applications
- RoHS Compliant

Features

11 A, 30 V. $R_{DS(ON)} = 8.5 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$
 $R_{DS(ON)} = 12 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$

- Occupies only 0.10 cm^2 of PCB area:
1/3 the area of SO-8.
- Ultra-thin package: less than 0.80 mm height when mounted to PCB.
- High performance trench technology for extremely low $R_{DS(ON)}$
- Optimized for low Q_g and Q_{gd} to enable fast switching and reduce CdV/dt gate coupling

Absolute Maximum Ratings

$T_A=25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain-Source Voltage	30	V
V_{GSS}	Gate-Source Voltage	± 20	V
I_D	Drain Current – Continuous	11	A
	– Pulsed	20	
P_D	Power Dissipation (Steady State)	2.1	W
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to +150	$^\circ\text{C}$

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	60	$^\circ\text{C/W}$
$R_{\theta JB}$	Thermal Resistance, Junction-to-Ball (Note 1)	6.3	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	0.6	

Package Marking and Ordering Information

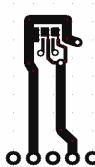
Device Marking	Device	Reel Size	Tape width	Quantity
7296	FDZ7296	7"	8mm	3000 units

Electrical Characteristics

$T_A = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BV_{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$	30			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		27		$\text{mV}/^\circ\text{C}$
I_{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}$, $V_{GS} = 0 \text{ V}$			1	μA
I_{GS}	Gate–Body Leakage.	$V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0 \text{ V}$			± 100	nA
On Characteristics (Note 2)						
$V_{GS(\text{th})}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	1	1.8	3	V
$\Delta V_{GS(\text{th})}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-4.9		$\text{mV}/^\circ\text{C}$
$R_{DS(\text{on})}$	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}$, $I_D = 11 \text{ A}$ $V_{GS} = 4.5 \text{ V}$, $I_D = 10 \text{ A}$ $V_{GS} = 10 \text{ V}$, $I_D = 11 \text{ A}$, $T_J = 125^\circ\text{C}$		7 9 9.1	8.5 12 13	$\text{m}\Omega$
Dynamic Characteristics						
C_{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$		1520		pF
C_{oss}	Output Capacitance			420		pF
C_{rss}	Reverse Transfer Capacitance			130		pF
g_{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}$, $I_D = 11 \text{ A}$		46		S
R_G	Gate Resistance	$V_{GS} = 15 \text{ mV}$, $f = 1.0 \text{ MHz}$		1.1		Ω
Switching Characteristics (Note 2)						
$t_{d(on)}$	Turn–On Delay Time	$V_{DD} = 15 \text{ V}$, $I_D = 1 \text{ A}$, $V_{GS} = 10 \text{ V}$, $R_{GEN} = 6 \Omega$		10	20	ns
t_r	Turn–On Rise Time			4	8	ns
$t_{d(off)}$	Turn–Off Delay Time			27	43	ns
t_f	Turn–Off Fall Time			13	23	ns
$Q_{g(\text{TOT})}$	Total Gate Charge at $V_{GS}=10\text{V}$	$V_{DD} = 15 \text{ V}$, $I_D = 11 \text{ A}$,		22	31	nC
Q_g	Total Gate Charge at $V_{GS}=5\text{V}$			12	17	nC
Q_{gs}	Gate–Source Charge			4.5		nC
Q_{gd}	Gate–Drain Charge			3.1		nC

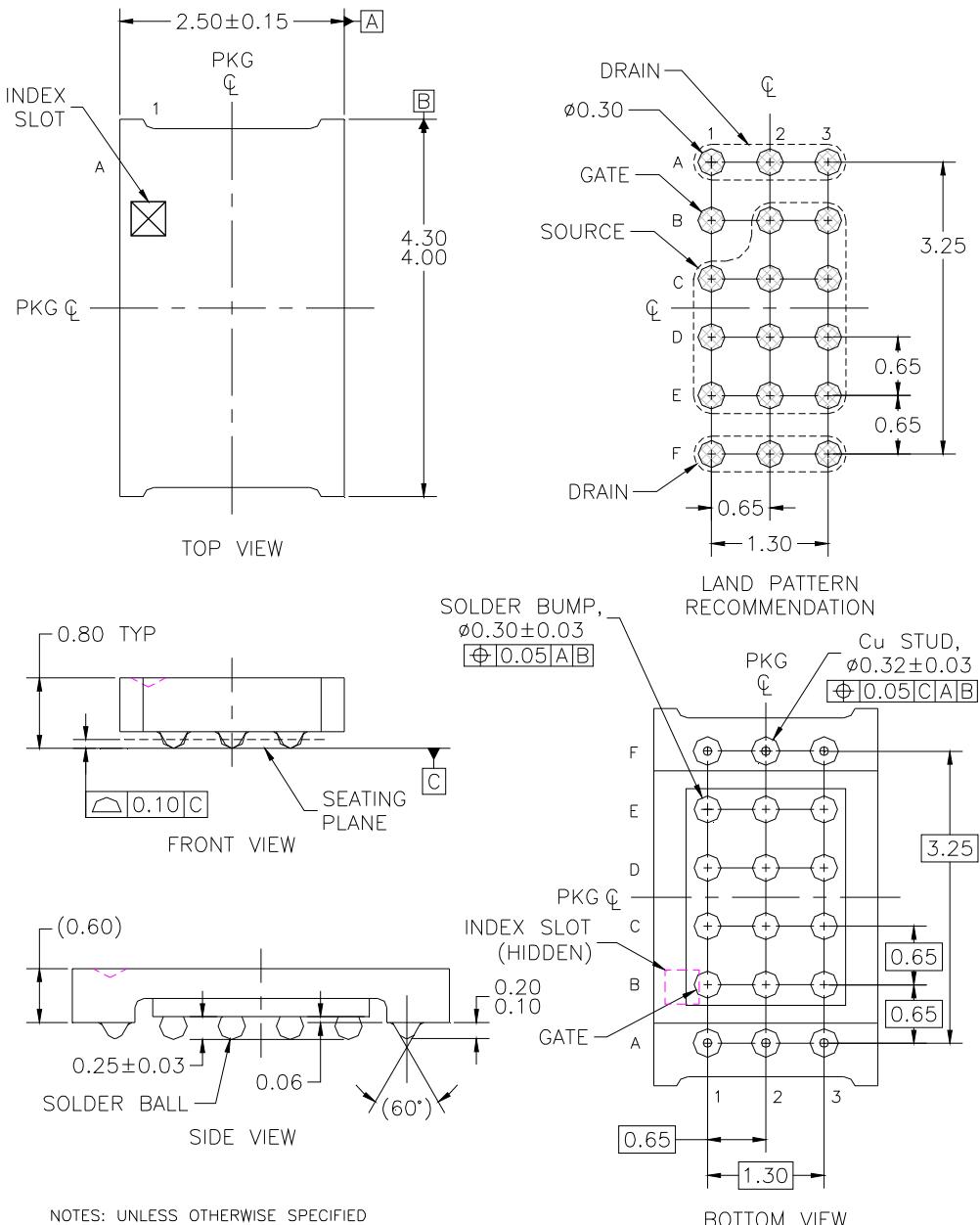
Drain–Source Diode Characteristics and Maximum Ratings


I_S	Maximum Continuous Drain–Source Diode Forward Current			1.7	A	
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}$, $I_S = 1.7 \text{ A}$ (Note 2)		0.7	1.2	V
t_{rr}	Diode Reverse Recovery Time	$I_F = 11 \text{ A}$ $d_I/d_t = 100 \text{ A}/\mu\text{s}$		28		nS
Q_{rr}	Diode Reverse Recovery Charge		(Note 2)	18		nC

Notes:

- $R_{\theta JA}$ is determined with the device mounted on a 1 in² 2 oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. The thermal resistance from the junction to the circuit board side of the solder ball, $R_{\theta JB}$, is defined for reference. For $R_{\theta JC}$, the thermal reference point for the case is defined as the top surface of the copper chip carrier. $R_{\theta JC}$ and $R_{\theta JB}$ are guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a) 60°C/W when mounted on a 1 in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB


b) 108°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper

- Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%

FDZ7296 30V N-Channel PowerTrench® BGA MOSFET

Dimensional Outline and Pad Layout

Typical Characteristics

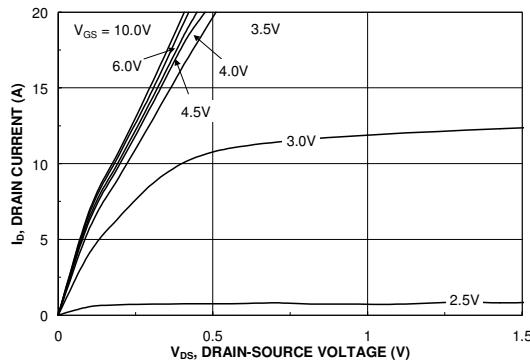


Figure 1. On-Region Characteristics.

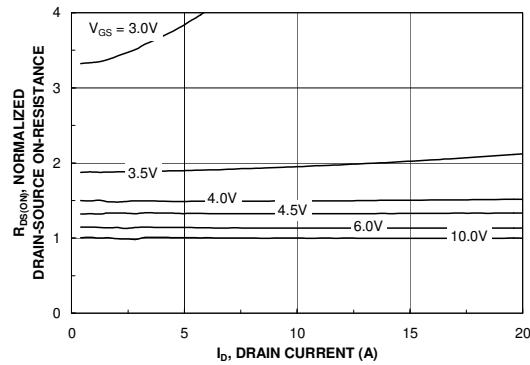


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

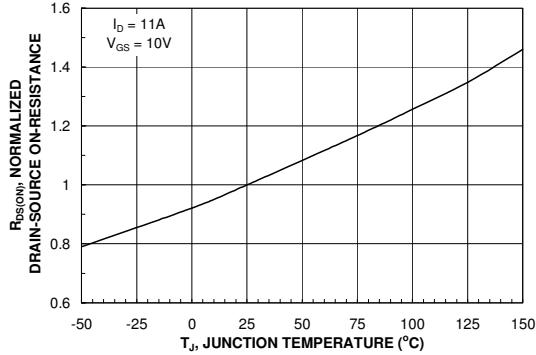


Figure 3. On-Resistance Variation with Temperature.

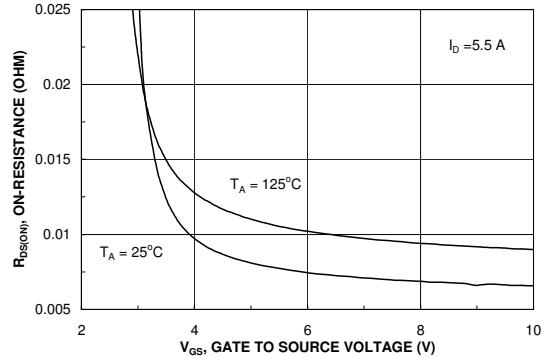


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

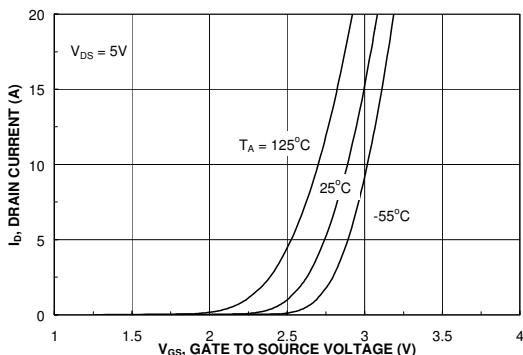


Figure 5. Transfer Characteristics.

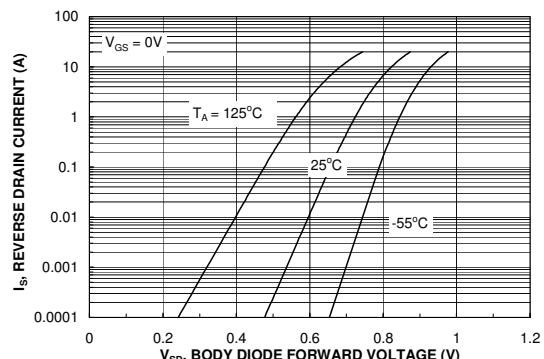


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

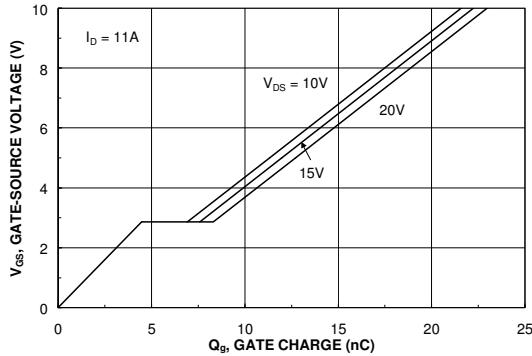


Figure 7. Gate Charge Characteristics.

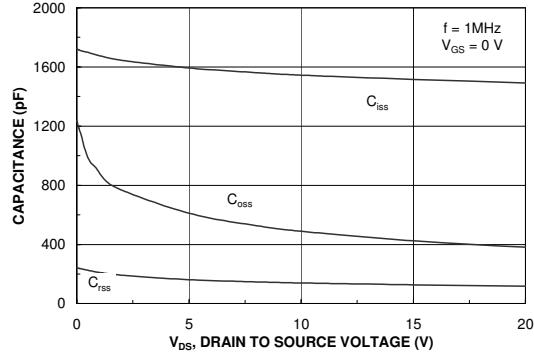


Figure 8. Capacitance Characteristics.

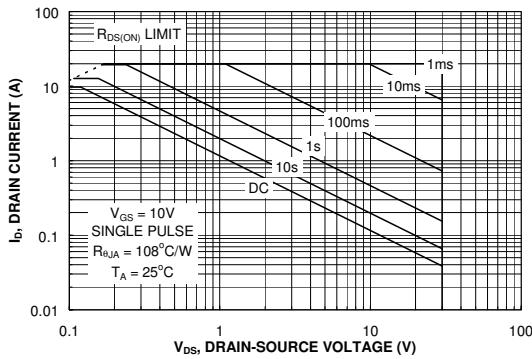


Figure 9. Maximum Safe Operating Area.

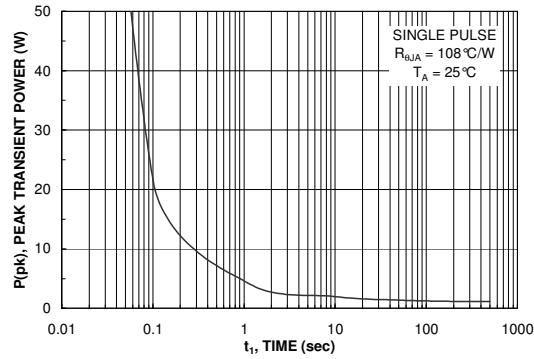


Figure 10. Single Pulse Maximum Power Dissipation.

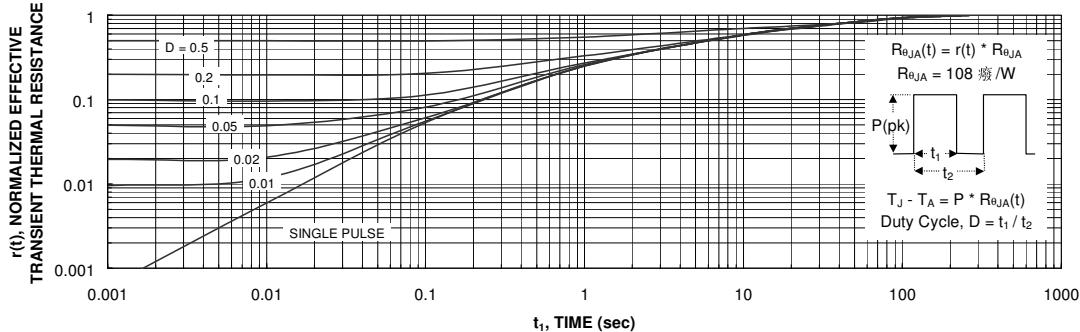


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b.
Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®	Green FPS™	Power247®	SuperSOT™-8
Build it Now™	Green FPS™ e-Series™	POWEREDGE®	SyncFET™
CorePLUS™	GTO™	Power-SPM™	The Power Franchise®
CROSSVOLT™	i-Lo™	PowerTrench®	the power franchise
CTL™	IntelliMAX™	Programmable Active Droop™	TinyBoost™
Current Transfer Logic™	ISOPLANAR™	QFET®	TinyBuck™
EcoSPARK®	MegaBuck™	QS™	TinyLogic®
F ®	MICROCOUPLER™	QT Optoelectronics™	TINYOPTO™
Fairchild®	MicroFET™	Quiet Series™	TinyPower™
Fairchild Semiconductor®	MicroPak™	RapidConfigure™	TinyPWM™
FACT Quiet Series™	Motion-SPM™	SMART START™	TinyWire™
FACT®	OPTOLOGIC®	SPM®	µSerDes™
FAST®	OPTOPLANAR®	STEALTH™	UHC®
FastvCore™	®	SuperFET™	UniFET™
FPS™	PDP-SPM™	SupersOT™-3	VCX™
FRFET®	Power220®	SupersOT™-6	
Global Power Resource™			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.