

Description

The PT6715 series of power modules are a 13-A rated integrated switching regulator (ISR), housed in a 17-pin space saving solderable copper package. These modules will operate off either a 5V or 3.3V input power bus to provide a high-performance low-voltage power source for the industry's latest high-speed, DSPs, μ Ps, and bus drivers. This allows for the easy integration of these new low-voltage ICs into existing 3.3V or 5V systems without re-designing the central power supply. The series includes the standard output bus voltage options, ranging from 1.0V to 3.3V. Each output voltage option has a limited adjust range.

Features include a Standby (On/Off) function, a differential output Remote Sense, and short circuit protection. The modules are available in both through-hole and surface mount configurations.

Features

- 13-A Output Current
- Single Device: 3.3V/5V Input
- 90% Efficiency (PT6715)
- On/Off Standby Function
- Differential Remote Sense
- Adjustable Output Voltage
- Short Circuit Protection
- 17-pin Space-Saving Package
- Solderable Copper Case

Ordering Information

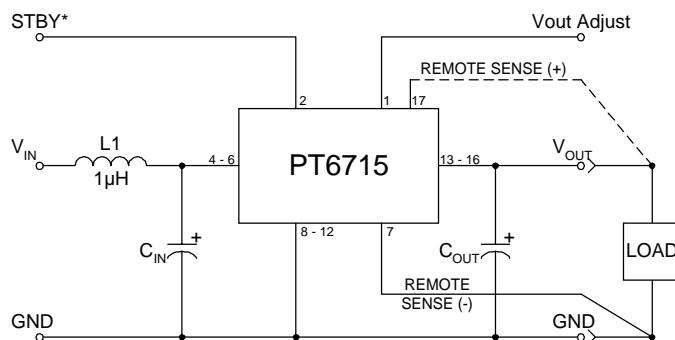
- PT6715□ = 3.3 Volts
- PT6716□ = 2.5 Volts
- PT6717□ = 1.8 Volts
- PT6718□ = 1.5 Volts
- PT6719□ = 1.2 Volts
- PT6714□ = 1.0 Volts

† 3.3V Input Bus Capable

PT Series Suffix (PT1234x)

Case/Pin Configuration	Order Suffix	Package Code *
Vertical	N	(EMD)
Horizontal	A	(EMA)
SMD	C	(EMC)

* Previously known as package styles 1340/50.


*(Reference the applicable package code drawing
for the dimensions and PC board layout)*

Pin-Out Information

Pin	Function
1	V _o Adjust
2	STBY*
3	Do Not Connect
4	V _{in}
5	V _{in}
6	V _{in}
7	Remote Sense Gnd
8	GND
9	GND
10	GND
11	GND
12	GND
13	V _{out}
14	V _{out}
15	V _{out}
16	V _{out}
17	Remote Sense V _{out}

* For further information, see application notes.

Standard Application

C_{in} = Required 1000 μ F electrolytic
 C_{out} = Required 330 μ F electrolytic
 L_1 = Optional 1 μ H input choke

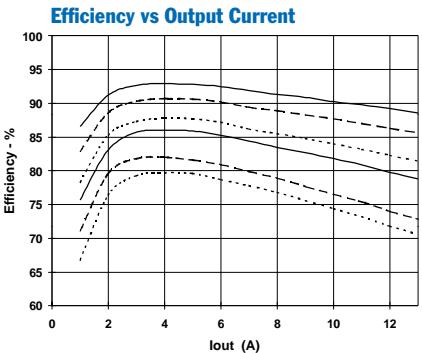
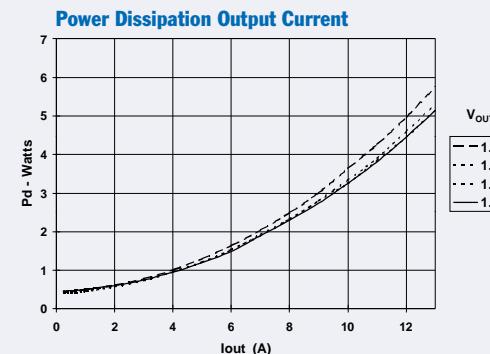
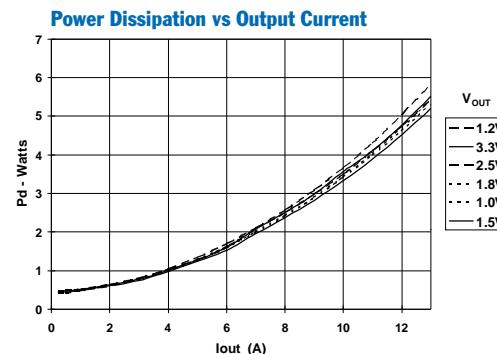
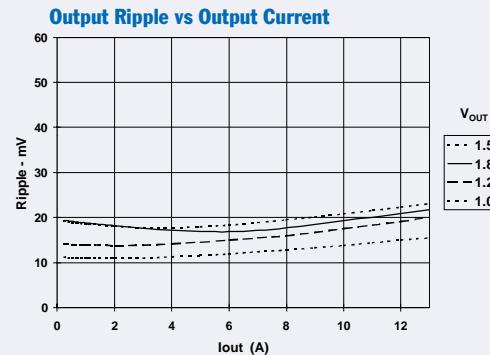
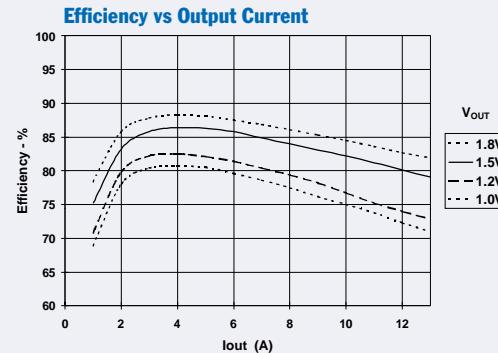
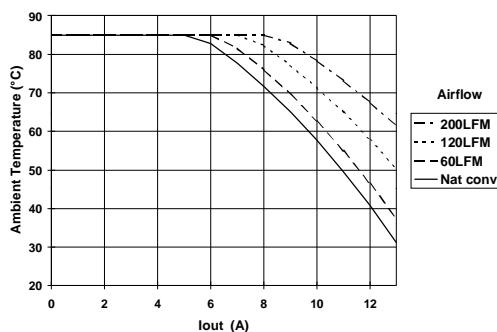
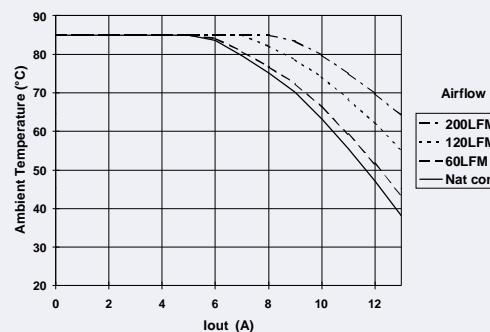
Specifications (Unless otherwise stated, $T_a = 25^\circ\text{C}$, $V_{in} = 5\text{V}$, $C_{in} = 1,000\mu\text{F}$, $C_{out} = 330\mu\text{F}$, and $I_o = I_{o\max}$)

Characteristic	Symbol	Conditions	PT6715 Series				
			Min	Typ	Max	Units	
Output Current	I_o	$T_a = +60^\circ\text{C}$, 200LFM $T_a = +25^\circ\text{C}$, natural convection	0.1 (1) 0.1 (1)	—	13 13	A	
Input Voltage Range	V_{in}	Over I_o Range	$V_o \geq 2.5\text{V}$ $V_o \leq 1.8\text{V}$	4.5 3.1	— —	5.5 5.5	VDC
Set Point Voltage Tolerance	$V_o\text{tol}$		—	± 1	± 1.5 (2)	% V_o	
Temperature Variation	Reg_{temp}	$-40^\circ \leq T_a \leq +85^\circ\text{C}$, $I_o = I_{o\min}$	—	± 0.5	—	% V_o	
Line Regulation	Reg_{line}	Over V_{in} range	—	± 5	± 10	mV	
Load Regulation	Reg_{load}	Over I_o range	—	± 5	± 10	mV	
Total Output Voltage Variation	$\Delta V_{o\text{tot}}$	Includes set-point, line, load, $-40^\circ \leq T_a \leq +85^\circ\text{C}$	—	± 2	± 3	% V_o	
Efficiency	η	$I_o = 9\text{A}$	$V_o = 3.3\text{V}$ $V_o = 2.5\text{V}$ $V_o = 1.8\text{V}$ $V_o = 1.5\text{V}$ $V_o = 1.2\text{V}$ $V_o = 1.0\text{V}$	91 88 85 83 78 75	— — — — — —	%	
V_o Ripple (pk-pk)	V_r	20MHz bandwidth	—	35	—	mV _{pp}	
Transient Response	t_{tr}	5A/μs load step, 50% to 100% $I_{o\max}$	—	50	—	μs	
	ΔV_{tr}	V_o over/undershoot	—	± 100	—	mV	
Over-Current Threshold	I_{TRIP}	Reset, followed by auto-recovery	—	20	32	A	
Switching Frequency	f_s	Over V_{in} and I_o range	300	350	400	kHz	
Remote On/Off (Pin 2)		Referenced to $-V_{in}$ (pin 8)					
Input High Voltage	V_{IH}		+2.0	—	Open (3)	V	
Input Low Voltage	V_{IL}		-0.1	—	+0.4		
Input Low Current	I_{IL}		—	-0.5	—	mA	
Standby Input Current	$I_{in\text{ standby}}$	pins 2 & 8 connected	—	25	35	mA	
External Output Capacitance	C_{out}	See application schematic	330	—	15,000	μF	
External Input Capacitance	C_{in}	See application schematic	1,000	—	—	μF	
Operating Temperature Range	T_a	Over V_{in} range	-40 (4)	—	+85 (5)	°C	
Storage Temperature	T_s	—	-40	—	+125	°C	
Reliability	MTBF	Per Bellcore TR-332 50% stress, $T_a = 40^\circ\text{C}$, ground benign	5.4	—	—	10 ⁶ Hrs	
Mechanical Shock	—	Per Mil-Std-883D, method 2002.3, 1ms, half-sine, mounted to a fixture	—	500	—	G's	
Mechanical Vibration	—	Mil-Std-883D, Method 2007.2, 20-2000Hz, soldered in PCB	Suffix A Suffix C	15 (6) 20 (6)	—	G's	
Weight	—	Materials meet UL 94V-0	—	23	—	grams	
Flammability	—	Materials meet UL 94V-0	—	—	—		

Notes: (1) The ISR will operate at no load with reduced specifications.

(2) If the remote sense feature is not being used, connect the Remote Sense Gnd (pin 7) to GND (pin 8) for optimum output voltage accuracy.

(3) The STBY* control (pin 2) has an internal pull-up and if it is left open circuit the module will operate when input power is applied. The open-circuit voltage is typically 12.6V, and maybe as high as 15V. Consult the related application note for other interface considerations.








(4) For operation below 0°C, C_{in} and C_{out} must have stable characteristics. Use either low ESR tantalum or Oscon® capacitors.

(5) See Safe Operating Area curves or contact the factory for the appropriate derating.

(6) The case pins on through-hole package types (suffixes N & A) must be soldered. For more information consult the applicable package outline drawing.

Input/Output Capacitors: The PT6715 series requires a 1,000μF electrolytic (or tantalum) capacitor at the input and 330μF at the output for proper operation in all applications. In addition, the input capacitance, C_{in} , must be rated for a minimum of 2A_{rms} of ripple current. For transient or dynamic load applications additional capacitance may be necessary. For more information consult the related application note on capacitor recommendations.

Input Inductor: An input filter inductor is optional for most applications. The inductor must be sized to handle 10ADC with a typical value of 1μH.

Characteristic Data; $V_{in} = 5.0V$ (See Note A)Characteristic Data; $V_{in} = 3.3V$ (See Note A)Safe Operating Area; $V_{in} = 5V$ (See Note B)Safe Operating Area; $3.3V$ (See Note B)

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the Converter.

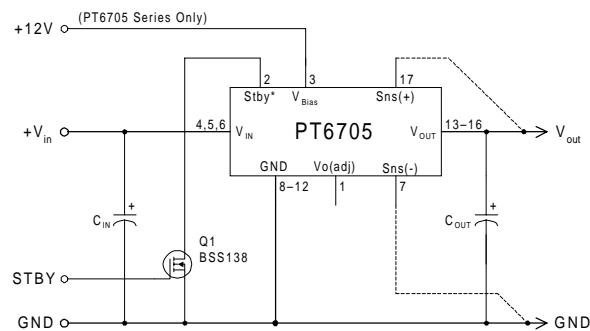
Note B: SOA curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures

Using the On/Off Standby Function on the PT6705/6715 Excalibur™ Series of ISRs

The PT6705 and PT6715 regulator series are non-programmable (preset voltage) versions of the PT6701, PT6702, and PT6703 products.

The PT6705/6715 series of products incorporate an on/off 'standby' function, which may be used to disable the regulator output. The standby function is provided by the *STBY** control, pin 2. If pin 2 is left open-circuit the regulator operates normally, and provides a regulated output when a valid supply voltage is applied to V_{in} (pins 4–6) with respect to GND (pins 8–12). If pin 2 is connected to ground, the regulator output is disabled and the input current drawn by the ISR typically drops to its idle value¹. The standby control may also be used to hold-off the regulator output during the period that input power is applied.

Pin 2 is ideally controlled with an open-collector (or open-drain) discrete transistor (See Figure 1-1²). The open-circuit voltage will be approximately 12.0V. Table 1-1 gives the circuit parameters for this control input.


Table 1-1 Standby Control Requirements^{3,4}

Parameter	Min	Typ	Max
Enable (V_{IH})	—		Open Circuit
Disable (V_{IL})	-0.2V		0.4V
I_{stby} (pin 2 =ground)		-0.5mA	
V_{stby} (open circuit)	12.0V		15.0V

Notes:

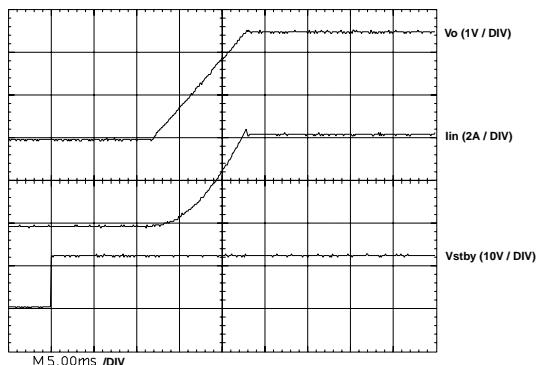

- When the regulator output is disabled the current drawn from the $+V_{in}$ input source is typically reduced to 25mA for the PT671x series, and to less than 100 μ A for the PT670x series.
- Figure 1-1 is an application schematic for the PT670x models. This shows the requirement for an external +12V bias supply. The +12V bias is not required for the PT671x models. For more details, consult the applicable product data sheet.
- The standby control input requires no external pull-up resistor. The open-circuit voltage of the *STBY** pin is approximately 12.0V.
- The standby control input is Not compatible with TTL devices that incorporate a totem-pole output drive. Use only a true open-collector device, preferably a discrete bipolar transistor (or MOSFET). To ensure the regulator output is disabled, the control pin must be pulled to less than 0.4Vdc with a low-level 0.5mA sink to ground.
- After Q₁ in Figure 1-1 is turned off and before the output begins to rise, the regulator output will assert a low impedance to ground. If an external voltage is applied to the output it will sink current and possibly over-stress the part.

Figure 1-1

Turn-On Time: In the circuit of Figure 1-1, turning Q₁ on applies a low voltage to pin 2 and disables the regulator output. Correspondingly, turning Q₁ off removes the low-voltage signal and enables the output⁵. Once enabled, the output will typically experience a 10–15ms delay followed by a predictable ramp-up of voltage. The regulator provides a fully regulated output within 40ms. The waveforms of Figure 1-2 show the rise of both the output voltage and input current for a PT6706 (2.5V). The turn off of Q₁ corresponds to the rise of V_{stby} . The waveform was measured with a 5-Vdc input voltage and an 8-ADC load.

Figure 1-2

Adjusting the Output Voltage of the PT6705 and PT6715 Excalibur™ Series of Regulators

Both the PT6705 and PT6715 series ISRs are non-programmable versions of the PT6700 Excalibur™ family of converters. The output voltage of these regulators have a fixed output voltage, which may be adjusted higher or lower than the factory pre-set voltage using a single external resistor. Table 2-1 gives the adjustment range for each model in the series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R_2 , between pin 1 (V_o Adjust) and pin 7 (Remote Sense GND).

Adjust Down: Add a resistor (R_1), between pin 1 (V_o Adjust) and pin 17 (Remote Sense V_{out}).

Refer to Figure 2-1 and Table 2-2 for both the placement and value of the required resistor, either (R_1) or R_2 as appropriate.

Notes:

1. Use only a single 1% resistor in either the (R_1) or R_2 location. Place the resistor as close to the regulator as possible.
2. Never connect capacitors from V_o Adjust to either GND, V_{out} , or the Remote Sense pins. Adding capacitance to the V_o Adjust pin will affect the stability of the ISR.
3. If the Remote Sense feature is not being used, pin 7 must be connected to pin 8 for optimum output voltage accuracy. Correspondingly the resistors (R_1) and R_2 may be then be connected from V_o Adjust to either V_{out} or GND respectively.

4. The PT6705 series requires a 12V external bias voltage in order to operate (see data sheet). An external bias voltage is not required for the PT6715 series.
5. Adjusting the output voltage of the PT6705 and PT6715 (3.3V output) higher than the factory pre-set voltage may require an increase in the minimum input voltage. These two models must comply with the following requirements for V_{in} (min).

PT6705:

$$V_{in}(\min) = (V_a + 1)V$$

PT6715:

$$V_{in}(\min) = (V_a + 1)V \text{ or } 4.5V, \text{ whichever is greater.}$$

The values of (R_1) [adjust down], and R_2 [adjust up], can also be calculated using the following formulas.

$$(R_1) = \frac{R_o (V_a - V_r)}{V_o - V_a} - R_s \text{ k}\Omega$$

$$R_2 = \frac{R_o \cdot V_r}{V_a - V_o} - R_s \text{ k}\Omega$$

Where: V_o = Original output voltage
 V_a = Adjusted output voltage
 V_r = Reference voltage (Table 2-1)
 R_o = Resistance constant (Table 2-1)
 R_s = Internal series resistance (Table 2-1)

Figure 2-1

Table 2-1**ADJUSTMENT RANGE AND FORMULA PARAMETERS**

Series Pt #		PT6708	PT6707	PT6706	PT6705
12V Bias (4)	—	PT6714	PT6719	PT6718	PT6717
No Bias					
V_o (nom)	1.0	1.2	1.5	1.8	2.5
V_a (min)	0.94	1.09	1.47	1.75	2.25
V_a (max)	1.32	1.52	1.73	2.0	3.75
V_r (V)	0.8	0.8	1.27	1.27	1.27
R_o (kΩ)	10.0	10.0	10.2	10.0	10.0
R_s (kΩ)	24.9	24.9	49.9	49.9	33.2
					24.9

Table 2-2**ADJUSTMENT RESISTOR VALUES**

Series Pt #		PT6708	PT6707	PT6706	PT6705
12V Bias (4)	—	PT6714	PT6719	PT6718	PT6717
No Bias					
V_o (nom)	1.0V	1.2V	1.5V	1.8V	
V_a (req'd)					
0.950	(5.1)kΩ				
0.975	(45.1)kΩ				
1.000					
1.025	295.0kΩ				
1.050	135.0kΩ				
1.075	81.8kΩ				
1.100	55.1kΩ	(5.1)kΩ			
1.125	39.1kΩ	(18.4)kΩ			
1.150	28.4kΩ	(45.1)kΩ			
1.175	20.8kΩ	(125.0)kΩ			
1.200	15.1kΩ				
1.225	10.7kΩ	295.0kΩ			
1.250	7.1kΩ	135.0kΩ			
1.275	4.2kΩ	81.8kΩ			
1.300	1.8kΩ	55.1kΩ			
1.325		39.1kΩ			
1.350		28.4kΩ			
1.375		20.8kΩ			
1.400		15.1kΩ			
1.425		10.7kΩ			
1.450		7.1kΩ			
1.475		4.2kΩ	(32.1)kΩ		
1.50		1.8kΩ			
1.55			204.0kΩ		
1.60			77.1kΩ		
1.65			34.8kΩ		
1.70			13.6kΩ		
1.75			(46.1)kΩ		
1.80					
1.85			204.0kΩ		
1.90			77.1kΩ		
1.95			34.8kΩ		
2.00			13.6kΩ		
					3.3kΩ

R₁ = (Blue) R₂ = Black

Capacitor Recommendations for the Non-Isolated 13-A Excalibur™ Series of Regulators

Input Capacitors

The recommended input capacitor(s) is determined by the 2 ampere (rms) minimum ripple current rating and 1,000 μ F minimum capacitance. Ripple current and $\leq 100\text{m}\Omega$ ESR (Equivalent Series Resistance) values are the major considerations, along with temperature, when selecting the proper capacitor. Tantalum capacitors have a recommended minimum voltage rating of $2\times$ the input voltage; 10V for +5V operation.

Output Capacitors

The minimum required output capacitance is 330 μ F with a maximum ESR $\leq 100\text{m}\Omega$. Failure to observe this requirement may lead to regulator instability or oscillation. Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz, but excellent low frequency transient response. Above the ripple frequency ceramic decoupling capacitors are necessary to improve the transient response and reduce any high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in Table 3-1 below.

Table 3-1 Capacitors Characteristic Data

Tantalum Characteristics

Tantalum capacitors with a minimum 10V rating are recommended for the input bus, but only the AVX TPS, Sprague 594/595, or Kemet T495/T510 series. These types are recommended over many others due to their higher surge current, power dissipation and ripple current capability. As a caution, the TAJ series by AVX is not recommended. This series exhibits considerably higher ESR, reduced power dissipation and lower ripple current capability. The TAJ Series is also less reliable compared to the TPS series when determining power dissipation capability. Tantalum capacitors are highly recommended in applications where ambient temperatures fall below 0°C.

Capacitor Table

Table 3-1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The suggested minimum quantities per regulator for both the input and output buses are identified.

This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The RMS ripple current rating and ESR (Equivalent Series Resistance at 100kHz) are the critical parameters to insure both optimum regulator performance and long capacitor life.

Capacitor Vendor Series	Capacitor Characteristics					Quantity		Vendor Number
	Working Voltage	Value(μ F)	(ESR) Equivalent Series Resistance	85°C Maximum Ripple Current(rms)	Physical Size(mm)	Input Bus	Output Bus	
Panasonic FC/FK (Surface Mount) FC (Radial)	25V 35V	1000 330	0.038 Ω 0.080 Ω	2000mA 850mA	18x16.5 10x10.2	1	1 1	EEVFC1E102N EEVFK1V331P
	25V 25V	330 1200	0.090 Ω 0.038 Ω	755mA 2000mA	10x12.5 18x15	1	1 1	EEUFC1E331 EEUFC1E122S
United Chemi-Con LXV (Radial) FX (Surface Mount)	25V 35V 16V	330 1200 2700	0.084 Ω 0.028 Ω 0.028 Ω	825mA 2070mA 2070mA	10x16 16x25 16x25	1 1 1	1 1 1	LXV25VB331M10X16LL LXV35VB122M16X25LL LXV16VB272M16X25LL
	10V	680	0.015 Ω \pm 2 = 0.007 Ω	>7000mA	10x10.5	2	1	10FX680M (Os-con)
Nichicon PL Series PM Series	25V 25V	330 2200	0.095 Ω 0.028 Ω	750mA 2050mA	10x15 18x20	1	1 1	UPL1E331MPH6 UPL1E222MHH6
	25V	330	0.095 Ω	750mA	10x15		1	UPM1E331MPH6
Os-con: SS SVP (Surface Mount)	10V 10V	330 330	0.025 Ω \pm 3 = 0.008 Ω 0.025 Ω \pm 3 = 0.008 Ω	>7000mA >7000mA	10x10.5 10.3x11	3 3	1 1	10SS330M 10SVP330
AVX Tanatalum TPS Series (Surface Mount)	10V 10V	330 330	0.100 Ω \pm 3 = 0.034 Ω 0.060 Ω \pm 3 = 0.020 Ω	>3500mA >3500mA	7.0 L x5.97 W x3.45 H	3 3	1 1	TPSV337M010R0100 TPSV337M010R0060
Vishay/Sprague Tantalum 595D/594D Series (Surface Mount)	10V	330	0.045 Ω \pm 3 = 0.015 Ω	>4600mA	7.2 L x6.0 W x3.5 H	3	1	594D337X0010R2T
	10V	680	0.090 Ω \pm 4 = 0.023 Ω	>2500mA	7.2 L x4.3 W x3.1 H	2	1	595D687X0010R2T
Kemet Tantalum T510/T495 Series (Surface Mount)	10V	330	0.035 Ω \pm 3 = 0.012 Ω	>5000mA	7.3 L x4.3 W x4.0 H	3	1	T510X337M010AS
	10V	220	0.070 Ω \pm 5 = 0.035 Ω	>3000mA	7.3 L x4.3 W x4.0 H	5	2	T495X227M010AS
Sanyo Pospac TPB (surface Mount)	10V	220	0.040 Ω \pm 5 = 0.008 Ω	>3000mA	7.2 L x4.3 W x3.1 H	5	2	10TPB220M

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
PT6715A	OBsolete SIP MODULE		EMA	17		TBD	Call TI	Call TI	-40 to 85		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com