

General Purpose Linear Amplifier Module

Features

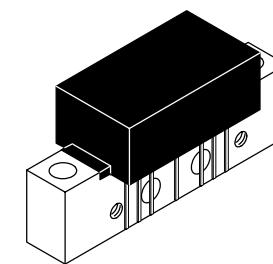
- 34.5 dB Typical Gain @ 100 MHz
- Silicon Bipolar Technology
- Class A Operation
- Typical ITO = +44 dBm @ 200 MHz
- Unconditionally Stable Under All Load Conditions

Applications

- Driver Amplifier in 50 Ohm Systems Requiring High Linearity
- Instrumentation Amplifiers
- Return Path Amplifier on CATV Systems Operating in the 10 to 200 MHz Frequency Range
- Possible Replacement for CA2830C

Description

- 24 Vdc Supply, 10 to 200 MHz, General Purpose Linear Amplifier Module
- Replaced MHW1345. There are no form, fit or function changes with this part replacement.
- RoHS Compliant


MHW1345N

10-200 MHz

34.5 dB

800 mW

**GENERAL PURPOSE
LINEAR AMPLIFIER MODULE**

CASE 1302-01, STYLE 1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	28	Vdc
RF Power Input	P _{in}	+5	dBm
Operating Case Temperature Range	T _C	-20 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +100	°C

Table 2. Electrical Characteristics (T_C = 25°C, V_{CC} = 24 V, 50 Ω system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	—	200	MHz
Gain Flatness (f = 10 - 200 MHz)	G _F	—	±0.5	±1	dB
Power Gain (f = 100 MHz)	G _p	33.5	34.5	35.5	dB
Noise Figure, Broadband (f = 200 MHz)	NF	—	3.8	4.5	dB
Power Output — 1 dB Compression (f = 10 - 200 MHz)	P _{1dB}	630	800	—	mW
Power Output — 1 dB Compression (f = 10 - 200 MHz, V _{CC} = 28 V)	P _{1dB}	1000	1260	—	mW
Third Order Intercept (See Figure 2, f ₁ = 200 MHz)	ITO	43	44	—	dBm
Input/Output VSWR (f = 10 - 200 MHz)	VSWR	—	1.5:1	2:1	—
Second Harmonic Distortion (Tone at 100 mW, f _{2H} = 150 MHz)	d _{so}	—	-60	-50	dB
Peak Envelope Power (Two Tone Distortion Test — See Figure 2) (f = 10 - 200 MHz @ -32 dB IMD)	PEP	600	800	—	mW
Supply Current	I _{CC}	270	310	330	mA

Table 3. S-Parameters (Biased at 24 Volts, T = 25°C Z_o = 50Ω)

Frequency (MHz)	S11		S21		S12		S22	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
10	-19.3	45.5	34.6	-0.6	-47.0	2.3	-14.5	76.8
50	-15.6	35.0	34.2	-56.7	-47.5	-30.3	-12.6	45.0
100	-13.2	34.4	33.9	-114	-47.9	-62.9	-10.8	10.7
200	-11.1	30.1	33.5	134	-48.3	-128	-14.9	-42.6

Magnitude in dB, Phase Angle in degrees.

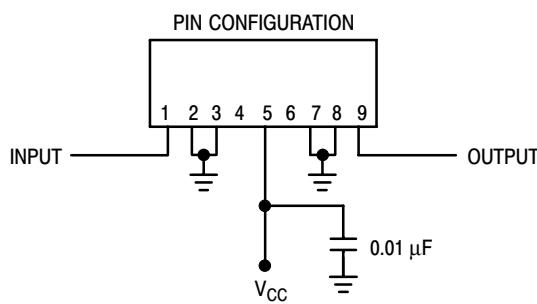
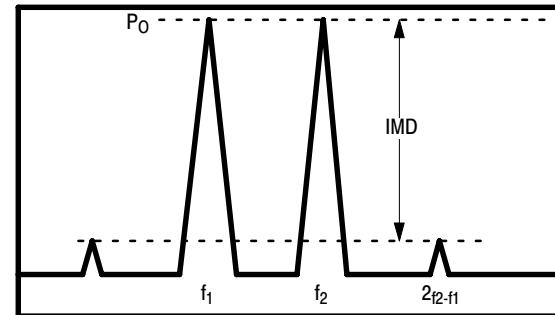
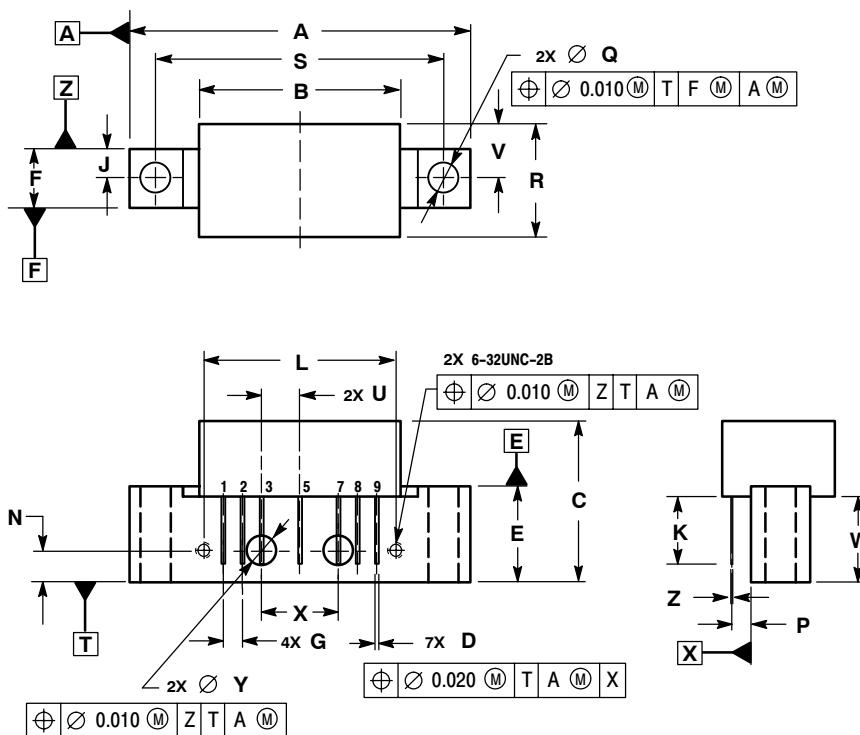



Figure 1. External Connections



$$\text{ITO} = P_0 + \frac{\text{IMD}}{2} \text{ @ IMD} > 60\text{dB}$$

$$\text{PEP} = 4X P_0 \text{ @ IMD} = -32\text{dB}$$

Figure 2. Intermodulation Test

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONS ARE IN INCHES.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	---	1.775	---	45.085
B	---	1.085	---	27.559
C	---	0.840	---	21.336
D	0.015	0.021	0.381	0.533
E	0.465	0.510	11.811	12.954
F	0.300	0.325	7.62	8.255
G	0.100	BSC	2.540	BSC
J	0.156	BSC	3.962	BSC
K	0.315	0.355	8.001	9.017
L	1.000	BSC	25.400	BSC
N	0.165	BSC	4.191	BSC
P	0.100	BSC	2.540	BSC
Q	0.148	0.168	3.759	4.267
R	---	0.600	---	15.24
S	1.500	BSC	38.100	BSC
U	0.200	BSC	5.080	BSC
V	---	0.250	---	6.350
W	0.435	---	11.049	---
X	0.400	BSC	10.160	BSC
Y	0.152	0.163	3.861	4.140
Z	0.009	0.011	0.229	0.279

STYLE 1:
 1. RF INPUT
 2. GROUND
 3. GROUND
 4. DELETED
 5. VDC
 6. DELETED
 7. GROUND
 8. GROUND
 9. RF OUTPUT

CASE 1302-01
 ISSUE E

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor
 Technical Information Center, CH370
 1300 N. Alma School Road
 Chandler, Arizona 85224
 +1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
 Freescale Halbleiter Deutschland GmbH
 Technical Information Center
 Schatzbogen 7
 81829 Muenchen, Germany
 +44 1296 380 456 (English)
 +46 8 52200080 (English)
 +49 89 92103 559 (German)
 +33 1 69 35 48 48 (French)
support@freescale.com

Japan:
 Freescale Semiconductor Japan Ltd.
 Headquarters
 ARCO Tower 15F
 1-8-1, Shimo-Meguro, Meguro-ku,
 Tokyo 153-0064
 Japan
 0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
 Freescale Semiconductor Hong Kong Ltd.
 Technical Information Center
 2 Dai King Street
 Tai Po Industrial Estate
 Tai Po, N.T., Hong Kong
 +800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
 Freescale Semiconductor Literature Distribution Center
 P.O. Box 5405
 Denver, Colorado 80217
 1-800-441-2447 or 303-675-2140
 Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.
 © Freescale Semiconductor, Inc. 2006, 2008. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see <http://www.freescale.com> or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to <http://www.freescale.com/epp>.

