

### FEATURES

#### Programmable Filtering:

Any Characteristic up to 108 Tap FIR and/or IIR

#### Polynomial Signal Conditioning up to 8<sup>th</sup> Order

#### Programmable Decimation and Output Word Rate

#### Flexible Programming Modes:

Boot from DSP or External EPROM

Parallel/Serial Interface

#### Internal Default Filter for Evaluation

14.4 MHz Max Master Clock Frequency

0 V to +4 V (Single-Ended) or  $\pm 2$  V (Differential) Input

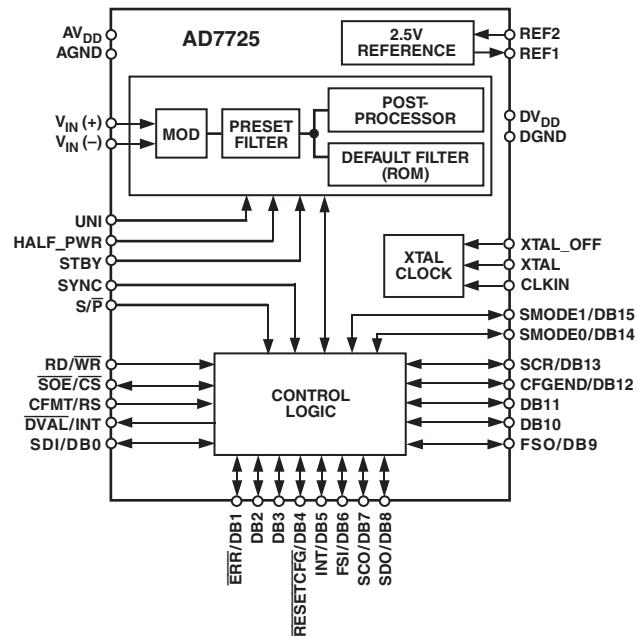
Range

Power Supplies: AV<sub>DD</sub>, DV<sub>DD</sub>: 5 V  $\pm 5\%$

On-Chip 2.5 V Voltage Reference

44-Lead MQFP Package

### TYPICAL APPLICATIONS


Radar

Sonar

Auxiliary Car Functions

Medical Communications

### FUNCTIONAL BLOCK DIAGRAM



### GENERAL DESCRIPTION

The AD7725 is a complete 16-bit, sigma-delta analog-to-digital converter with on-chip, user-programmable signal conditioning. The output of the modulator is processed by three cascaded finite impulse response (FIR) filters, followed by a fully user-programmable postprocessor. The postprocessor provides processing power of up to 130 million accumulates (MAC) per second. The user has complete control over the filter response, the filter coefficients, and the decimation ratio.

The postprocessor permits the signal conditioning characteristics to be programmed through a parallel or serial interface. It is programmed by loading a user-defined filter in the form of a configuration file. This filter can be loaded from a DSP or an external serial EEPROM. It is generated using a digital filter design package called Filter Wizard, which is available from the AD7725 section on the Analog Devices website. Filter Wizard

allows the user to design different filter types and generates the appropriate configuration file to be downloaded to the postprocessor. The AD7725 also has an internal default filter for evaluation purposes.

It provides 16-bit performance for input bandwidths up to 350 kHz with an output word rate of 900 kHz maximum. The input sample rate is set either by the crystal oscillator or an external clock.

This part has an accurate on-chip 2.5 V reference for the modulator. A reference input/output function is provided to allow either the internal reference or an external system reference to be used as the reference source for the modulator.

The device is available in a 44-lead MQFP package and is specified over a  $-40^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$  temperature range.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

# AD7725—SPECIFICATIONS<sup>1</sup> (AV<sub>DD</sub> = 5 V ±5%, AGND = AGND1 = AGND2 = DGND = 0 V, F<sub>CLKIN</sub><sup>2</sup> = 9.6 MHz, REF2 = 2.5 V, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted.)

| Parameter                                                                                | Test Conditions/Comments                                                                      | Min                    | B Version<br>Typ         | Max               | Unit                 |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|--------------------------|-------------------|----------------------|
| DYNAMIC SPECIFICATIONS                                                                   | When tested with the FIR filter in Figure 1. HALF_PWR = Logic High                            |                        |                          |                   |                      |
| Bipolar Mode<br>Signal to Noise <sup>3</sup>                                             | Measurement Bandwidth = 0.5 × F <sub>O</sub> <sup>4</sup><br>2.5 V Reference<br>3 V Reference | 77<br>79               | 83<br>85                 | -94<br>-98        | dB<br>dB<br>dB<br>dB |
| Total Harmonic Distortion <sup>3, 5</sup><br>Spurious Free Dynamic Range <sup>3, 5</sup> |                                                                                               |                        | -86<br>-89               |                   |                      |
| Unipolar Mode<br>Signal to Noise <sup>3</sup>                                            | Measurement Bandwidth = 0.5 × F <sub>O</sub> <sup>4</sup>                                     |                        | 83                       |                   | dB                   |
| Total Harmonic Distortion <sup>3, 5</sup>                                                |                                                                                               |                        | -94                      |                   | dB                   |
| ANALOG INPUTS                                                                            |                                                                                               |                        |                          |                   |                      |
| Full-Scale Input Span                                                                    | V <sub>IN</sub> (+) – V <sub>IN</sub> (–)                                                     |                        |                          |                   |                      |
| Bipolar Mode                                                                             | Differential or Single-Ended Input                                                            | 0                      | ±4/5 × V <sub>REF2</sub> |                   | V                    |
| Unipolar Mode                                                                            | Single-Ended Input                                                                            | AGND                   | 8/5 × V <sub>REF2</sub>  |                   | V                    |
| Absolute Input Voltage                                                                   | V <sub>IN</sub> (+) and/or V <sub>IN</sub> (–)                                                |                        | AV <sub>DD</sub>         |                   | V                    |
| Input Sampling Capacitance                                                               |                                                                                               | 2                      |                          | 14.4 <sup>6</sup> | pF                   |
| Input Sampling Rate, F <sub>CLKIN</sub>                                                  |                                                                                               |                        |                          |                   | MHz                  |
| CLOCK                                                                                    |                                                                                               |                        |                          |                   |                      |
| CLKIN Duty Ratio                                                                         |                                                                                               | 45                     | 55                       |                   | %                    |
| REFERENCE                                                                                |                                                                                               |                        |                          |                   |                      |
| REF1 Output Resistance                                                                   |                                                                                               |                        | 3.5                      |                   | kΩ                   |
| Reference Buffer                                                                         |                                                                                               |                        |                          |                   |                      |
| Offset Voltage                                                                           | Offset between REF1 and REF2                                                                  |                        | ±3                       |                   | mV                   |
| Using Internal Reference                                                                 |                                                                                               | 2.39                   | 2.54                     | 2.69              | V                    |
| REF2 Output Voltage                                                                      |                                                                                               |                        | 60                       |                   | ppm/°C               |
| REF2 Output Voltage Drift                                                                |                                                                                               |                        |                          |                   |                      |
| Using External Reference                                                                 | REF1 = AGND                                                                                   |                        | 8                        |                   | kΩ                   |
| REF2 Input Impedance                                                                     |                                                                                               |                        | 2.5                      |                   | V                    |
| REF2 External Voltage Input <sup>7</sup>                                                 |                                                                                               |                        |                          |                   |                      |
| STATIC PERFORMANCE                                                                       |                                                                                               |                        |                          |                   |                      |
| Resolution                                                                               | Guaranteed Monotonic                                                                          | 16                     |                          |                   | Bits                 |
| Differential Nonlinearity (DNL) <sup>3</sup>                                             |                                                                                               |                        | ±0.5                     | ±1 <sup>8</sup>   | LSB                  |
| Integral Nonlinearity (INL) <sup>3</sup>                                                 |                                                                                               |                        | ±2                       |                   | LSB                  |
| DC CMRR                                                                                  |                                                                                               |                        | 80                       |                   | dB                   |
| Offset Error                                                                             |                                                                                               |                        | ±20                      |                   | mV                   |
| Gain Error <sup>3, 9</sup>                                                               |                                                                                               |                        | ±0.5                     |                   | %FSR                 |
| LOGIC INPUTS (Excluding CLKIN)                                                           |                                                                                               |                        |                          |                   |                      |
| V <sub>INH</sub> , Input High Voltage                                                    |                                                                                               | 2.0                    |                          |                   | V                    |
| V <sub>INL</sub> , Input Low Voltage                                                     |                                                                                               |                        | 0.8                      |                   | V                    |
| CLOCK INPUT (CLKIN)                                                                      |                                                                                               |                        |                          |                   |                      |
| V <sub>INH</sub> , Input High Voltage                                                    |                                                                                               | 0.7 × DV <sub>DD</sub> |                          |                   | V                    |
| V <sub>INL</sub> , Input Low Voltage                                                     |                                                                                               |                        | 0.3 × DV <sub>DD</sub>   |                   | V                    |

| Parameter                                                                                                                                                                                 | Test Conditions/Comments                                                            | Min          | B Version<br>Typ | Max                | Unit                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|------------------|--------------------|--------------------------|
| ALL LOGIC INPUTS<br>I <sub>IN</sub> , Input Current<br>C <sub>IN</sub> , Input Capacitance                                                                                                | V <sub>IN</sub> = 0 V to DV <sub>DD</sub>                                           |              | 10               | ±10                | µA<br>pF                 |
| LOGIC OUTPUTS<br>V <sub>OH</sub> , Output High Voltage<br>V <sub>OL</sub> , Output Low Voltage                                                                                            | I <sub>OUT</sub>   = 200 µA<br> I <sub>OUT</sub>   = 1.6 mA                         | 4.0          |                  | 0.4                | V<br>V                   |
| POWER SUPPLIES <sup>10</sup><br>AV <sub>DD</sub> <sup>11</sup><br>AI <sub>DD</sub> <sup>11</sup><br>DV <sub>DD</sub><br>DI <sub>DD</sub> <sup>13</sup><br>Power Consumption <sup>14</sup> | HALF_PWR = Logic High <sup>12</sup><br>With the Filter in Figure 1.<br>Standby Mode | 4.75<br>4.75 | 28<br>84<br>30   | 5.25<br>5.25<br>90 | V<br>mA<br>V<br>mA<br>mW |

## NOTES

<sup>1</sup>Operating Temperature Range is as follows: B Version: -40°C to +85°C.<sup>2</sup>F<sub>CLKIN</sub> is the CLKIN frequency.<sup>3</sup>See Terminology section.<sup>4</sup>F<sub>O</sub> = Output Data Rate.<sup>5</sup>When using the internal reference, THD and SFDR specifications apply only to input signals above 10 kHz with a 10 µF decoupling capacitor between REF2 and AGND2. At frequencies below 10 kHz, THD degrades to -80 dB and SFDR degrades to -83 dB.<sup>6</sup>See Figures 23 and 24 for information regarding the number of filter taps allowed and the current consumption as the CLKIN frequency is varied.<sup>7</sup>The AD7725 can operate with an external reference input in the range of 1.2 V to 3.15 V.<sup>8</sup>Guaranteed by the design.<sup>9</sup>Gain Error excludes reference error.<sup>10</sup>All I<sub>DD</sub> tests are done with the digital inputs equal to 0 V or DV<sub>DD</sub>.<sup>11</sup>Analog current does not vary as the CLKIN frequency and the number of filter taps used in the postprocessor is varied.<sup>12</sup>If HALF\_PWR is logic low, AI<sub>DD</sub> will typically double.<sup>13</sup>Digital current varies as the CLKIN frequency and the number of filter taps used in the postprocessor is varied. See Figures 23 and 24.<sup>14</sup>Digital inputs static and equal to 0 or DV<sub>DD</sub>.

Specifications subject to change without notice.

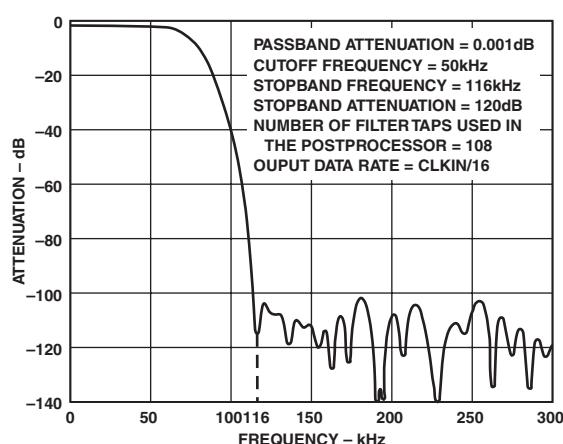



Figure 1. Digital Filter Characteristics Used for Specifications

Preset Filter, Default Filter, and Postprocessor Characteristics<sup>1, 2</sup>

| Parameter                          | Test Conditions/Comments          | Min              | Typ                         | Max            | Unit |
|------------------------------------|-----------------------------------|------------------|-----------------------------|----------------|------|
| DIGITAL FILTER RESPONSE            |                                   |                  |                             |                |      |
| PRESET FIR                         |                                   |                  |                             |                |      |
| Data Output Rate                   |                                   | 70               |                             | $F_{CLKIN}/8$  | Hz   |
| Stop-Band Attenuation              |                                   |                  |                             |                | dB   |
| Low-Pass Corner Frequency          |                                   |                  | $F_{CLKIN}/16$              |                | Hz   |
| Group Delay <sup>3</sup>           |                                   |                  | $133/(2 \times F_{CLKIN})$  |                | s    |
| Settling Time <sup>3</sup>         |                                   |                  | $133/F_{CLKIN}$             |                | s    |
| DEFAULT FILTER                     | Internal FIR Filter Stored in ROM |                  |                             |                |      |
| Number of Taps                     |                                   |                  |                             | 106            |      |
| Frequency Response                 |                                   |                  |                             | $\pm 0.001$    |      |
| 0 kHz to $F_{CLKIN}/546.08$        |                                   | $-3$             |                             |                | dB   |
| $F_{CLKIN}/195.04$                 |                                   | $-6$             |                             |                | dB   |
| $F_{CLKIN}/184.08$                 |                                   |                  |                             |                | dB   |
| $F_{CLKIN}/133.2$ to $F_{CLKIN}/2$ |                                   |                  |                             | $-120$         | dB   |
| Group Delay <sup>3</sup>           |                                   |                  | $2141/(2 \times F_{CLKIN})$ |                | s    |
| Settling Time <sup>3</sup>         |                                   |                  | $2141/F_{CLKIN}$            |                | s    |
| Output Data Rate, $F_o$            |                                   |                  | $F_{CLKIN}/32$              |                | Hz   |
| POSTPROCESSOR CHARACTERISTICS      |                                   |                  |                             |                |      |
| Input Data Rate                    |                                   |                  |                             | $F_{CLKIN}/8$  | Hz   |
| Coefficient Precision <sup>4</sup> |                                   | 24               |                             |                | Bits |
| Arithmetic Precision               |                                   | 30               |                             |                | Bits |
| No. of Taps Permitted              |                                   |                  |                             | 108            |      |
| Decimation Factor                  |                                   | 2                |                             | 256            |      |
| No. of Decimation Stages           |                                   | 1                |                             | 5              |      |
| Output Data Rate                   |                                   | $F_{CLKIN}/4096$ |                             | $F_{CLKIN}/16$ | Hz   |

## NOTES

<sup>1</sup>These characteristics are fixed by the design.<sup>2</sup> $F_{CLKIN}$  is the CLKIN frequency.<sup>3</sup>See Terminology.<sup>4</sup>See the Configuration File Format section for more information.

# TIMING SPECIFICATIONS<sup>1, 2</sup> (AV<sub>DD</sub> = 5 V ±5%; DV<sub>DD</sub> = 5 V ±5%; AGND = DGND = 0 V, REF2 = 2.5 V, unless otherwise noted.)

AD7725

| Parameter                                     | Symbol      | Min               | Typ | Max               | Unit      |
|-----------------------------------------------|-------------|-------------------|-----|-------------------|-----------|
| CLKIN Frequency                               | $f_{CLKIN}$ | 1                 |     | 14.4              | MHz       |
| CLKIN Period ( $t_{CLK} = 1/f_{CLKIN}$ )      | $t_1$       | 0.07              |     | 1                 | μs        |
| CLKIN Low Pulsewidth                          | $t_2$       | $0.45 \times t_1$ |     | $0.55 \times t_1$ |           |
| CLKIN High Pulsewidth                         | $t_3$       | $0.45 \times t_1$ |     | $0.55 \times t_1$ |           |
| CLKIN Rise Time                               | $t_4$       | 5                 |     |                   | ns        |
| CLKIN Fall Time                               | $t_5$       | 5                 |     |                   | ns        |
| CLKIN to SCO Delay                            | $t_6$       |                   | 35  | 50                | ns        |
| SCO Period: SCR = 0                           | $t_7$       |                   | 1   |                   | $t_{CLK}$ |
| SCR = 1                                       | $t_7$       |                   | 2   |                   | $t_{CLK}$ |
| SERIAL INTERFACE (DSP MODE ONLY)              |             |                   |     |                   |           |
| FSI Setup Time before SCO Transition          | $t_8$       | 30                |     |                   | ns        |
| FSI Hold Time after SCO Transition            | $t_9$       | 0                 |     |                   | ns        |
| SDI Setup Time                                | $t_{10}$    | 30                |     |                   | ns        |
| SDI Hold Time                                 | $t_{11}$    | 0                 |     |                   | ns        |
| SERIAL INTERFACE (DSP AND BFR MODES)          |             |                   |     |                   |           |
| SCO Transition to FSO High Delay              | $t_{12}$    |                   |     | 20                | ns        |
| SCO Transition to FSO Low Delay               | $t_{13}$    |                   |     | 20                | ns        |
| SDO Setup before SCO Transition               | $t_{14}$    |                   |     | 10                | ns        |
| SDO Hold after SCO Transition                 | $t_{15}$    | 0                 |     |                   | ns        |
| SERIAL INTERFACE (EPROM MODE)                 |             |                   |     |                   |           |
| SCO High Time                                 | $t_{16}$    |                   |     | 8                 | $t_{CLK}$ |
| SCO Low Time                                  | $t_{17}$    |                   |     | 8                 | $t_{CLK}$ |
| SOE Low to First SCO Rising Edge              | $t_{18}$    |                   |     | 20                | $t_{CLK}$ |
| Data Setup before SCO Rising Edge             | $t_{19}$    |                   | 22  |                   | ns        |
| PARALLEL INTERFACE                            |             |                   |     |                   |           |
| DATA WRITE                                    |             |                   |     |                   |           |
| RS Low to CS Low                              | $t_{20}$    | 15                |     |                   | ns        |
| WR Setup before CS Low                        | $t_{21}$    | 15                |     |                   | ns        |
| RS Hold after CS Rising Edge                  | $t_{22}$    | 0                 |     |                   | ns        |
| CS Pulsewidth                                 | $t_{23}$    | 50                |     |                   | ns        |
| WR Hold after CS Rising Edge                  | $t_{24}$    | 0                 |     |                   | ns        |
| Data Setup Time                               | $t_{25}$    | 10                |     |                   | ns        |
| Data Hold Time                                | $t_{26}$    | 5                 |     |                   | ns        |
| DATA READ                                     |             |                   |     |                   |           |
| RS Low to CS Low                              | $t_{27}$    | 15                |     |                   | ns        |
| RD Setup before CS Low                        | $t_{28}$    | 15                |     |                   | ns        |
| RS Hold after CS Rising Edge                  | $t_{29}$    | 0                 |     |                   | ns        |
| RD Hold after CS Rising Edge                  | $t_{30}$    | 0                 |     |                   | ns        |
| Data Valid after CS Falling Edge <sup>3</sup> | $t_{31}$    |                   |     | 30                | ns        |
| Data Hold after CS Rising Edge                | $t_{32}$    | 10                |     |                   | ns        |
| STATUS READ/INSTRUCTION WRITE                 |             |                   |     |                   |           |
| CS Duty Cycle                                 | $t_{33}$    | 1                 |     |                   | $t_{CLK}$ |
| Interrupt Clear after CS Low                  | $t_{34}$    |                   |     | 15                | ns        |
| RD Setup to CS Low                            | $t_{35}$    | 15                |     |                   | ns        |
| RD Hold after CS Rising Edge                  | $t_{36}$    |                   |     | 0                 | ns        |
| Read Data Access Time <sup>3</sup>            | $t_{37}$    |                   |     | 30                | ns        |
| Read Data Hold after CS Rising Edge           | $t_{38}$    | 10                |     |                   | ns        |
| Write Data Setup before CS Rising Edge        | $t_{39}$    | 10                |     |                   | ns        |
| Write Data Hold after CS Rising Edge          | $t_{40}$    | 5                 |     |                   | ns        |

## NOTES

<sup>1</sup>Guaranteed by design.

<sup>2</sup>Sample tested at 25°C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of DV<sub>DD</sub>) and timed from a voltage level of 1.6 V.

<sup>3</sup>Measured with the load circuit in Figure 2 and defined as the time required for the output to cross 0.8 V and 2.4 V.

# AD7725

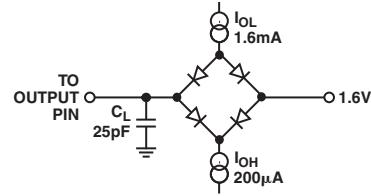



Figure 2. Load Circuit for Digital Output Timing Specifications

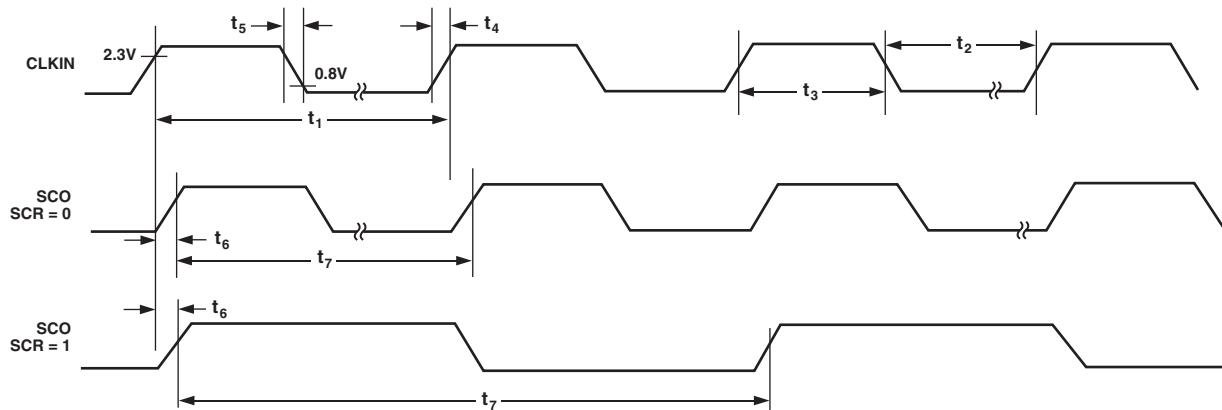



Figure 3. CLKIN to SCO Relationship

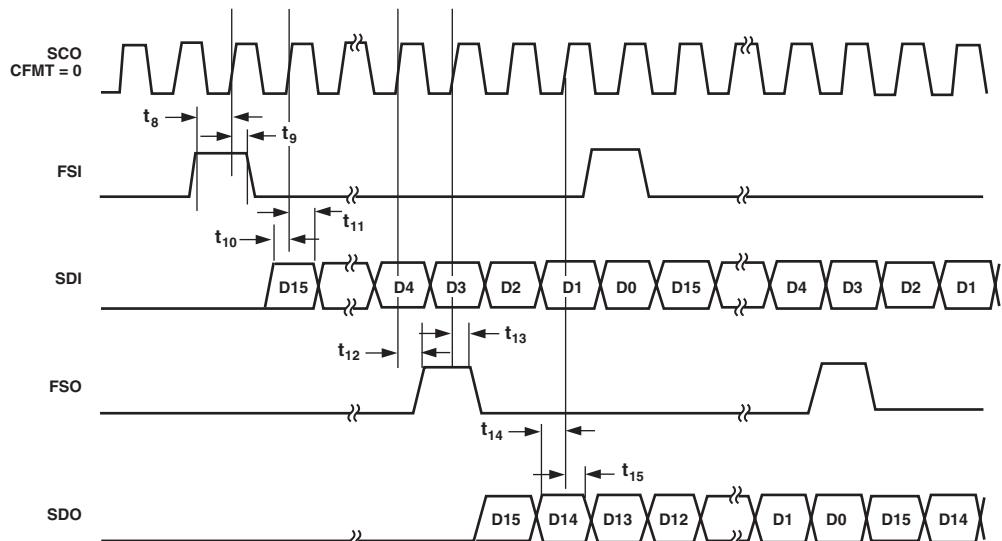



Figure 4. Serial Mode (DSP Mode and Boot from ROM (BFR) Mode). In BFR Mode, FSI and SDI Are Not Used.

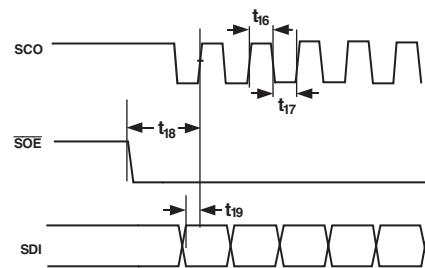



Figure 5. Serial Mode (EPROM Mode)

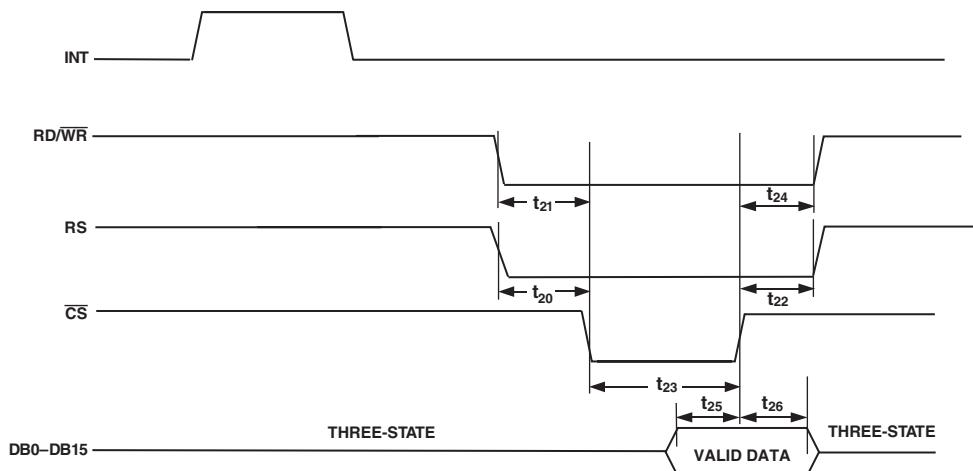



Figure 6. Parallel Mode (Writing Data to the AD7725)

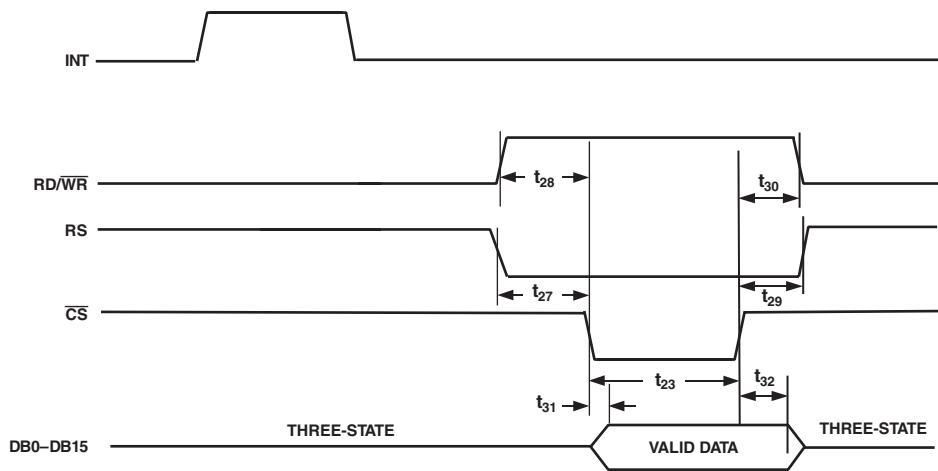



Figure 7. Parallel Mode (Reading Data from the AD7725)

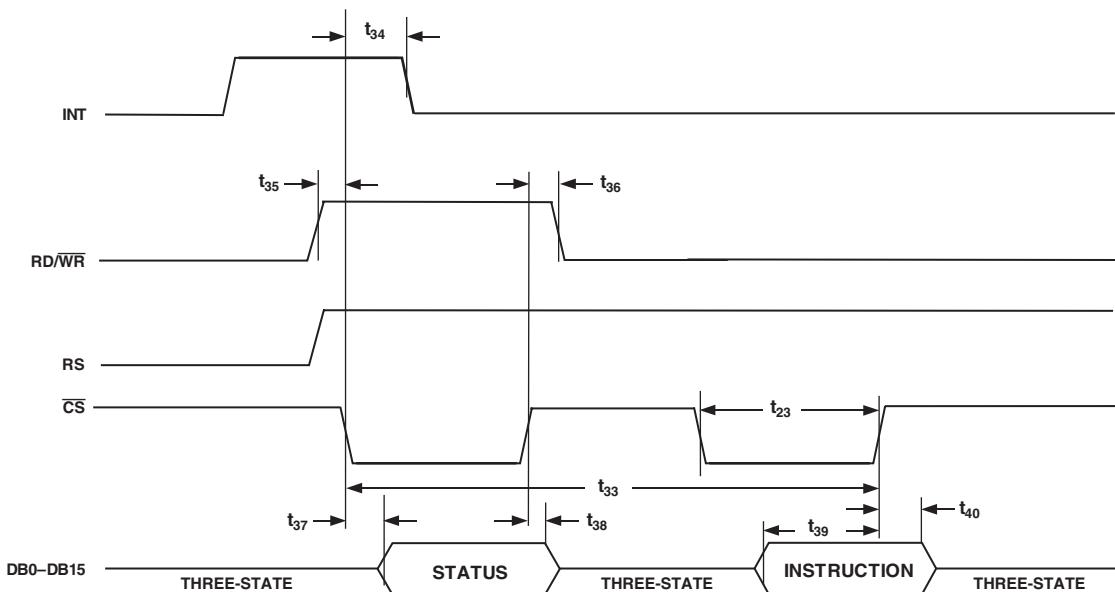



Figure 8. Parallel Mode (Reading the Status Register and Writing Instructions)

**ABSOLUTE MAXIMUM RATINGS<sup>1</sup>**(T<sub>A</sub> = 25°C, unless otherwise noted.)

|                                                          |       |                                    |
|----------------------------------------------------------|-------|------------------------------------|
| DV <sub>DD</sub> to DGND                                 | ..... | -0.3 V to +7 V                     |
| AV <sub>DD</sub> to AGND                                 | ..... | -0.3 V to +7 V                     |
| AV <sub>DD</sub> , AV <sub>DD1</sub> to DV <sub>DD</sub> | ..... | -1 V to +1 V                       |
| AGND, AGND1 to DGND                                      | ..... | -0.3 V to +0.3 V                   |
| Digital Inputs to DGND                                   | ..... | -0.3 V to DV <sub>DD</sub> + 0.3 V |
| Digital Outputs to DGND                                  | ..... | -0.3 V to DV <sub>DD</sub> + 0.3 V |
| V <sub>IN</sub> (+), V <sub>IN</sub> (-) to AGND         | ..... | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| REF1 to AGND                                             | ..... | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| REF2 to AGND                                             | ..... | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| REFIN to AGND                                            | ..... | -0.3 V to AV <sub>DD</sub> + 0.3 V |
| DGND, AGND                                               | ..... | ±0.3 V                             |
| Input Current to Any Pin Except Supplies <sup>2</sup>    | ..... | ±10 mA                             |
| I <sub>DD</sub> (AI <sub>DD</sub> + DI <sub>DD</sub> )   | ..... | 150 mA                             |
| Operating Temperature Range                              | ..... | -40°C to +85°C                     |
| Storage Temperature Range                                | ..... | -65°C to +150°C                    |
| Junction Temperature                                     | ..... | 150°C                              |
| θ <sub>JA</sub> Thermal Impedance                        | ..... | 58°C/C/W                           |
| θ <sub>JC</sub> Thermal Impedance                        | ..... | 20°C/C/W                           |
| Lead Temperature, Soldering                              |       |                                    |
| Vapor Phase (60 sec)                                     | ..... | 215°C                              |
| Infrared (15 sec)                                        | ..... | 220°C                              |
| ESD                                                      | ..... | 2 kV                               |

**NOTES**

<sup>1</sup> Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

<sup>2</sup> Transient currents of up to 100 mA will not cause SCR latch-up.

**CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7725 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

**ORDERING GUIDE**

| Model                          | Temperature Range | Package Description   | Package Option <sup>1</sup> |
|--------------------------------|-------------------|-----------------------|-----------------------------|
| AD7725BS                       | -40°C to +85°C    | Plastic Quad Flatpack | S-44                        |
| EVAL-AD7725CB <sup>2</sup>     |                   | Evaluation Board      |                             |
| EVAL-CONTROL BRD2 <sup>3</sup> |                   | Controller Board      |                             |

<sup>1</sup>S = Plastic Quad Flatpack (MQFP)<sup>2</sup>This board can be used as a standalone evaluation board or in conjunction with the Evaluation Board Controller for evaluation/demonstration purposes. It is accompanied by software and technical documentation.<sup>3</sup>Evaluation Board Controller. This board is a complete unit allowing a PC to control and communicate with all Analog Devices boards ending in the CB designator. To obtain the complete evaluation kit, the following needs to be ordered: EVAL-AD7725CB, EVAL-CONTROL BRD2, and a 12 V ac transformer. The Filter Wizard software can be downloaded from the Analog Devices website.