
The content and copyrights of the attached
 material are the property of its owner.

Distributed by:

www.Jameco.com  ✦ 1-800-831-4242

JMendiola
Text Box
Jameco Part Number 1720413



Altera Corporation  Section I–1
Preliminary

Section I. Cyclone FPGA
Family Data Sheet

This section provides designers with the data sheet specifications for 
Cyclone® devices. The chapters contain feature definitions of the internal 
architecture, configuration and JTAG boundary-scan testing information, 
DC operating conditions, AC timing parameters, a reference to power 
consumption, and ordering information for Cyclone devices. 

This section contains the following chapters:

■ Chapter 1. Introduction

■ Chapter 2. Cyclone Architecture

■ Chapter 3. Configuration & Testing

■ Chapter 4. DC & Switching Characteristics

■ Chapter 5. Reference & Ordering Information

Revision History Refer to each chapter for its own specific revision history. For information 
on when each chapter was updated, refer to the Chapter Revision Dates 
section, which appears in the complete handbook.
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1. Introduction

Introduction The Cyclone® field programmable gate array family is based on a 1.5-V, 
0.13-μm, all-layer copper SRAM process, with densities up to 20,060 logic 
elements (LEs) and up to 288 Kbits of RAM. With features like phase-
locked loops (PLLs) for clocking and a dedicated double data rate (DDR) 
interface to meet DDR SDRAM and fast cycle RAM (FCRAM) memory 
requirements, Cyclone devices are a cost-effective solution for data-path 
applications. Cyclone devices support various I/O standards, including 
LVDS at data rates up to 640 megabits per second (Mbps), and 66- and 
33-MHz, 64- and 32-bit peripheral component interconnect (PCI), for 
interfacing with and supporting ASSP and ASIC devices. Altera also 
offers new low-cost serial configuration devices to configure Cyclone 
devices.

The following shows the main sections in the Cyclone FPGA Family Data 
Sheet:

Section Page 

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2

Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
Logic Array Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
Logic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
MultiTrack Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
Embedded Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
Global Clock Network & Phase-Locked Loops. . . . . . . . . . . 2–29
I/O Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39
Power Sequencing & Hot Socketing . . . . . . . . . . . . . . . . . . . . 2–55

IEEE Std. 1149.1 (JTAG) Boundary Scan Support . . . . . . . . . . 3–1
SignalTap II Embedded Logic Analyzer  . . . . . . . . . . . . . . . . . 3–5
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5

Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9

Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
Device Pin-Outs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
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Features The Cyclone device family offers the following features:

■ 2,910 to 20,060 LEs, see Table 1–1
■ Up to 294,912 RAM bits (36,864 bytes)
■ Supports configuration through low-cost serial configuration device
■ Support for LVTTL, LVCMOS, SSTL-2, and SSTL-3 I/O standards
■ Support for 66- and 33-MHz, 64- and 32-bit PCI standard
■ High-speed (640 Mbps) LVDS I/O support
■ Low-speed (311 Mbps) LVDS I/O support
■ 311-Mbps RSDS I/O support
■ Up to two PLLs per device provide clock multiplication and phase 

shifting
■ Up to eight global clock lines with six clock resources available per 

logic array block (LAB) row
■ Support for external memory, including DDR SDRAM (133 MHz), 

FCRAM, and single data rate (SDR) SDRAM
■ Support for multiple intellectual property (IP) cores, including 

Altera® MegaCore® functions and Altera Megafunctions Partners 
Program (AMPPSM) megafunctions. 

Table 1–1. Cyclone Device Features

Feature EP1C3 EP1C4 EP1C6 EP1C12 EP1C20

LEs 2,910 4,000 5,980 12,060 20,060

M4K RAM blocks (128 × 36 bits) 13 17 20 52 64

Total RAM bits 59,904 78,336 92,160 239,616 294,912

PLLs 1 2 2 2 2

Maximum user I/O pins (1) 104 301 185 249 301

Note to Table 1–1:
(1) This parameter includes global clock pins.
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Cyclone devices are available in quad flat pack (QFP) and space-saving 
FineLine® BGA packages (see Table 1–2 through 1–3).

Vertical migration means you can migrate a design from one device to 
another that has the same dedicated pins, JTAG pins, and power pins, and 
are subsets or supersets for a given package across device densities. The 
largest density in any package has the  highest number of power pins; you 
must use the layout for the largest planned density in a package to 
provide the necessary power pins for migration.

For I/O pin migration across densities, cross-reference the available I/O 
pins using the device pin-outs for all planned densities of a given package 
type to identify which I/O pins can be migrated. The Quartus® II 
software can automatically cross-reference and place all pins for you 
when given a device migration list. If one device has power or ground 
pins, but these same pins are user I/O on a different device that is in the 
migration path,the Quartus II software ensures the pins are not used as 
user I/O in the Quartus II software. Ensure that these pins are connected 
to the appropriate plane on the board. The Quartus II software reserves 
I/O pins as power pins as necessary for layout with the larger densities 
in the same package having more power pins.

Table 1–2. Cyclone Package Options & I/O Pin Counts

Device 100-Pin TQFP 
(1)

144-Pin TQFP 
(1), (2)

240-Pin PQFP 
(1)

256-Pin 
FineLine BGA

324-Pin 
FineLine BGA

400-Pin 
FineLine BGA

EP1C3 65 104

EP1C4 249 301

EP1C6 98 185 185

EP1C12 173 185 249

EP1C20 233 301

Notes to Table 1–2:
(1) TQFP: thin quad flat pack.

PQFP: plastic quad flat pack.
(2) Cyclone devices support vertical migration within the same package (i.e., designers can migrate between the 

EP1C3 device in the 144-pin TQFP package and the EP1C6 device in the same package)
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Document 
Revision History

Table 1–4 shows the revision history for this document.

Table 1–3. Cyclone QFP & FineLine BGA Package Sizes

Dimension 100-Pin 
TQFP

144-Pin 
TQFP

240-Pin 
PQFP

256-Pin 
FineLine 

BGA

324-Pin 
FineLine 

BGA

400-Pin 
FineLine 

BGA

Pitch (mm) 0.5 0.5 0.5 1.0 1.0 1.0

Area (mm2) 256 484 1,024 289 361 441

Length × width 
(mm × mm)

16 × 16 22 × 22 34.6 × 34.6 17 × 17 19 × 19 21 × 21

Table 1–4. Document Revision History

Date & 
Document 

Version
Changes Made Summary of Changes

January 2007 
v1.4

Added document revision history.

August 2005 
v1.3

Minor updates.

October 2003 
v1.2

Added 64-bit PCI support information.

September 
2003 v1.1

● Updated LVDS data rates to 640 Mbps from 311 Mbps.
● Updated RSDS feature information.

May 2003 v1.0 Added document to Cyclone Device Handbook.
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2. Cyclone Architecture

Functional 
Description

Cyclone® devices contain a two-dimensional row- and column-based 
architecture to implement custom logic. Column and row interconnects 
of varying speeds provide signal interconnects between LABs and 
embedded memory blocks.

The logic array consists of LABs, with 10 LEs in each LAB. An LE is a 
small unit of logic providing efficient implementation of user logic 
functions. LABs are grouped into rows and columns across the device. 
Cyclone devices range between 2,910 to 20,060 LEs.

M4K RAM blocks are true dual-port memory blocks with 4K bits of 
memory plus parity (4,608 bits). These blocks provide dedicated true 
dual-port, simple dual-port, or single-port memory up to 36-bits wide at 
up to 250 MHz. These blocks are grouped into columns across the device 
in between certain LABs. Cyclone devices offer between 60 to 288 Kbits of 
embedded RAM.

Each Cyclone device I/O pin is fed by an I/O element (IOE) located at the 
ends of LAB rows and columns around the periphery of the device. I/O 
pins support various single-ended and differential I/O standards, such as 
the 66- and 33-MHz, 64- and 32-bit PCI standard and the LVDS I/O 
standard at up to 640 Mbps. Each IOE contains a bidirectional I/O buffer 
and three registers for registering input, output, and output-enable 
signals. Dual-purpose DQS, DQ, and DM pins along with delay chains 
(used to phase-align DDR signals) provide interface support with 
external memory devices such as DDR SDRAM, and FCRAM devices at 
up to 133 MHz (266 Mbps).

Cyclone devices provide a global clock network and up to two PLLs. The 
global clock network consists of eight global clock lines that drive 
throughout the entire device. The global clock network can provide 
clocks for all resources within the device, such as IOEs, LEs, and memory 
blocks. The global clock lines can also be used for control signals. Cyclone 
PLLs provide general-purpose clocking with clock multiplication and 
phase shifting as well as external outputs for high-speed differential I/O 
support.

Figure 2–1 shows a diagram of the Cyclone EP1C12 device.

C51002-1.5
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Figure 2–1. Cyclone EP1C12 Device Block Diagram

The number of M4K RAM blocks, PLLs, rows, and columns vary per 
device. Table 2–1 lists the resources available in each Cyclone device.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Table 2–1. Cyclone Device Resources

Device
M4K RAM

PLLs LAB Columns LAB Rows
Columns Blocks

EP1C3 1 13 1 24 13

EP1C4 1 17 2 26 17

EP1C6 1 20 2 32 20

EP1C12 2 52 2 48 26

EP1C20 2 64 2 64 32
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Logic Array Blocks

Logic Array 
Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, a local 
interconnect, look-up table (LUT) chain, and register chain connection 
lines. The local interconnect transfers signals between LEs in the same 
LAB. LUT chain connections transfer the output of one LE's LUT to the 
adjacent LE for fast sequential LUT connections within the same LAB. 
Register chain connections transfer the output of one LE's register to the 
adjacent LE's register within an LAB. The Quartus® II Compiler places 
associated logic within an LAB or adjacent LABs, allowing the use of 
local, LUT chain, and register chain connections for performance and area 
efficiency. Figure 2–2 details the Cyclone LAB.

Figure 2–2. Cyclone LAB Structure

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB 
local interconnect is driven by column and row interconnects and LE 
outputs within the same LAB. Neighboring LABs, PLLs, and M4K RAM 
blocks from the left and right can also drive an LAB's local interconnect 
through the direct link connection. The direct link connection feature 
minimizes the use of row and column interconnects, providing higher 

Direct link
interconnect from
adjacent block

Direct link
interconnect to
adjacent block

Row Interconnect

Column Interconnect

Local InterconnectLAB

Direct link
interconnect from 
adjacent block

Direct link
interconnect to
adjacent block



2–4  Altera Corporation
Preliminary January 2007

Cyclone Device Handbook, Volume 1

performance and flexibility. Each LE can drive 30 other LEs through fast 
local and direct link interconnects. Figure 2–3 shows the direct link 
connection.

Figure 2–3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. 
The control signals include two clocks, two clock enables, two 
asynchronous clears, synchronous clear, asynchronous preset/load, 
synchronous load, and add/subtract control signals. This gives a 
maximum of 10 control signals at a time. Although synchronous load and 
clear signals are generally used when implementing counters, they can 
also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's 
clock and clock enable signals are linked. For example, any LE in a 
particular LAB using the labclk1 signal will also use labclkena1. If 
the LAB uses both the rising and falling edges of a clock, it also uses both 
LAB-wide clock signals. De-asserting the clock enable signal will turn off 
the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous 
load/preset signal. The asynchronous load acts as a preset when the 
asynchronous load data input is tied high.

LAB

Direct link
interconnect
to right

Direct link interconnect from
right LAB, M4K memory
block, PLL, or IOE output

Direct link interconnect from
left LAB, M4K memory

block, PLL, or IOE output

Local
Interconnect

Direct link
interconnect

to left
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With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [5..0] and LAB local interconnect generate the LAB-
wide control signals. The MultiTrackTM interconnect's inherent low skew 
allows clock and control signal distribution in addition to data. Figure 2–4 
shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals

Logic Elements The smallest unit of logic in the Cyclone architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
contains a four-input LUT, which is a function generator that can 
implement any function of four variables. In addition, each LE contains a 
programmable register and carry chain with carry select capability. A 
single LE also supports dynamic single bit addition or subtraction mode 
selectable by an LAB-wide control signal. Each LE drives all types of 
interconnects: local, row, column, LUT chain, register chain, and direct 
link interconnects. See Figure 2–5.

labclkena1

labclk2labclk1

labclkena2

asyncload
or labpre

syncload

Dedicated
LAB Row
Clocks

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

labclr1

labclr2

synclr

addnsub

6
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Figure 2–5. Cyclone LE 

Each LE's programmable register can be configured for D, T, JK, or SR 
operation. Each register has data, true asynchronous load data, clock, 
clock enable, clear, and asynchronous load/preset inputs. Global signals, 
general-purpose I/O pins, or any internal logic can drive the register's 
clock and clear control signals. Either general-purpose I/O pins or 
internal logic can drive the clock enable, preset, asynchronous load, and 
asynchronous data. The asynchronous load data input comes from the 
data3 input of the LE. For combinatorial functions, the LUT output 
bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing 
resources. The LUT or register output can drive these three outputs 
independently. Two LE outputs drive column or row and direct link 
routing connections and one drives local interconnect resources. This 
allows the LUT to drive one output while the register drives another 
output. This feature, called register packing, improves device utilization 
because the device can use the register and the LUT for unrelated 
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functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. “MultiTrack 
Interconnect” on page 2–12 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE's dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A − B. The LUT 
computes addition; subtraction is computed by adding the two's 
complement of the intended subtractor. The LAB-wide signal converts to 
two's complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Cyclone LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE⎯the four data inputs from the LAB local interconnect, 
carry-in0 and carry-in1 from the previous LE, the LAB carry-in 
from the previous carry-chain LAB, and the register chain connection⎯are 
directed to different destinations to implement the desired logic function. 
LAB-wide signals provide clock, asynchronous clear, asynchronous 
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preset/load, synchronous clear, synchronous load, and clock enable 
control for the register. These LAB-wide signals are available in all LE 
modes. The addnsub control signal is allowed in arithmetic mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain's logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums:

data1 + data2 + carry-in0

or

data1 + data2 + carry-in1

The other two LUTs use the data1 and data2 signals to generate two 
possible carry-out signals⎯one for a carry of 1 and the other for a carry of 
0. The carry-in0 signal acts as the carry select for the carry-out0 
output and carry-in1 acts as the carry select for the carry-out1 
output. LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are LAB-
wide signals that affect all registers in the LAB. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs. The addnsub LAB-wide signal controls whether the LE acts 
as an adder or subtractor.
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between 
LEs in dynamic arithmetic mode. The carry-select chain uses the 
redundant carry calculation to increase the speed of carry functions. The 
LE is configured to calculate outputs for a possible carry-in of 0 and carry-
in of 1 in parallel. The carry-in0 and carry-in1 signals from a lower-
order bit feed forward into the higher-order bit via the parallel carry chain 
and feed into both the LUT and the next portion of the carry chain. Carry-
select chains can begin in any LE within an LAB. 

The speed advantage of the carry-select chain is in the parallel pre-
computation of carry chains. Since the LAB carry-in selects the 
precomputed carry chain, not every LE is in the critical path. Only the 
propagation delays between LAB carry-in generation (LE 5 and LE 10) are 
now part of the critical path. This feature allows the Cyclone architecture 
to implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 
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Figure 2–8 shows the carry-select circuitry in an LAB for a 10-bit full 
adder. One portion of the LUT generates the sum of two bits using the 
input signals and the appropriate carry-in bit; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for accumulator functions. Another portion of the LUT generates carry-
out bits. An LAB-wide carry-in bit selects which chain is used for the 
addition of given inputs. The carry-in signal for each chain, carry-in0 
or carry-in1, selects the carry-out to carry forward to the carry-in 
signal of the next-higher-order bit. The final carry-out signal is routed to 
an LE, where it is fed to local, row, or column interconnects. 

Figure 2–8. Carry Select Chain
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The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to M4K 
memory blocks. A carry chain can continue as far as a full column.

Clear & Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a NOT-
gate push-back technique. Cyclone devices support simultaneous preset/ 
asynchronous load and clear signals. An asynchronous clear signal takes 
precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, Cyclone devices provide a chip-
wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals.

MultiTrack 
Interconnect

In the Cyclone architecture, connections between LEs, M4K memory 
blocks, and device I/O pins are provided by the MultiTrack interconnect 
structure with DirectDriveTM technology. The MultiTrack interconnect 
consists of continuous, performance-optimized routing lines of different 
speeds used for inter- and intra-design block connectivity. The Quartus II 
Compiler automatically places critical design paths on faster 
interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
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migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, PLLs, and M4K memory 
blocks within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks
■ R4 interconnects traversing four blocks to the right or left

The direct link interconnect allows an LAB or M4K memory block to 
drive into the local interconnect of its left and right neighbors. Only one 
side of a PLL block interfaces with direct link and row interconnects. The 
direct link interconnect provides fast communication between adjacent 
LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, or two LABs and one M4K RAM 
block. These resources are used for fast row connections in a four-LAB 
region. Every LAB has its own set of R4 interconnects to drive either left 
or right. Figure 2–9 shows R4 interconnect connections from an LAB. R4 
interconnects can drive and be driven by M4K memory blocks, PLLs, and 
row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive 
a given R4 interconnect. For R4 interconnects that drive to the right, the 
primary LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor 
can drive on to the interconnect. R4 interconnects can drive other R4 
interconnects to extend the range of LABs they can drive. R4 
interconnects can also drive C4 interconnects for connections from one 
row to another. 
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Figure 2–9. R4 Interconnect Connections

Notes to Figure 2–9:
(1) C4 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.

The column interconnect operates similarly to the row interconnect. Each 
column of LABs is served by a dedicated column interconnect, which 
vertically routes signals to and from LABs, M4K memory blocks, and row 
and column IOEs. These column resources include:

■ LUT chain interconnects within an LAB
■ Register chain interconnects within an LAB
■ C4 interconnects traversing a distance of four blocks in an up and 

down direction

Cyclone devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from LE 
1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Figure 2–10. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs or M4K blocks up or down from a 
source LAB. Every LAB has its own set of C4 interconnects to drive either 
up or down. Figure 2–11 shows the C4 interconnect connections from an 
LAB in a column. The C4 interconnects can drive and be driven by all 
types of architecture blocks, including PLLs, M4K memory blocks, and 
column and row IOEs. For LAB interconnection, a primary LAB or its 
LAB neighbor can drive a given C4 interconnect. C4 interconnects can 
drive each other to extend their range as well as drive row interconnects 
for column-to-column connections. 
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.
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All embedded blocks communicate with the logic array similar to LAB-
to-LAB interfaces. Each block (i.e., M4K memory or PLL) connects to row 
and column interconnects and has local interconnect regions driven by 
row and column interconnects. These blocks also have direct link 
interconnects for fast connections to and from a neighboring LAB.

Table 2–2 shows the Cyclone device's routing scheme.

Table 2–2. Cyclone Device Routing Scheme
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Embedded 
Memory

The Cyclone embedded memory consists of columns of M4K memory 
blocks. EP1C3 and EP1C6 devices have one column of M4K blocks, while 
EP1C12 and EP1C20 devices have two columns (see Table 1–1 on 
page 1–2 for total RAM bits per density). Each M4K block can implement 
various types of memory with or without parity, including true dual-port, 
simple dual-port, and single-port RAM, ROM, and FIFO buffers. The 
M4K blocks support the following features:

■ 4,608 RAM bits
■ 250 MHz performance
■ True dual-port memory
■ Simple dual-port memory
■ Single-port memory
■ Byte enable
■ Parity bits
■ Shift register
■ FIFO buffer
■ ROM
■ Mixed clock mode

1 Violating the setup or hold time on the address registers could corrupt the 
memory contents. This applies to both read and write operations.

Memory Modes

The M4K memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K blocks offer a true dual-port mode to support any 
combination of two-port operations: two reads, two writes, or one read 
and one write at two different clock frequencies. Figure 2–12 shows true 
dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration
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In addition to true dual-port memory, the M4K memory blocks support 
simple dual-port and single-port RAM. Simple dual-port memory 
supports a simultaneous read and write. Single-port memory supports 
non-simultaneous reads and writes. Figure 2–13 shows these different 
M4K RAM memory port configurations.

Figure 2–13. Simple Dual-Port & Single-Port Memory Configurations

Note to Figure 2–13:
(1) Two single-port memory blocks can be implemented in a single M4K block as long 

as each of the two independent block sizes is equal to or less than half of the M4K 
block size.

The memory blocks also enable mixed-width data ports for reading and 
writing to the RAM ports in dual-port RAM configuration. For example, 
the memory block can be written in ×1 mode at port A and read out in ×16 
mode from port B.
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RAM by registering both the input and output signals to the M4K RAM 
block. All M4K memory block inputs are registered, providing 
synchronous write cycles. In synchronous operation, the memory block 
generates its own self-timed strobe write enable (wren) signal derived 
from a global clock. In contrast, a circuit using asynchronous RAM must 
generate the RAM wren signal while ensuring its data and address 
signals meet setup and hold time specifications relative to the wren 
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signal. The output registers can be bypassed. Pseudo-asynchronous 
reading is possible in the simple dual-port mode of M4K blocks by 
clocking the read enable and read address registers on the negative clock 
edge and bypassing the output registers.

When configured as RAM or ROM, you can use an initialization file to 
pre-load the memory contents.

Two single-port memory blocks can be implemented in a single M4K 
block as long as each of the two independent block sizes is equal to or less 
than half of the M4K block size.

The Quartus II software automatically implements larger memory by 
combining multiple M4K memory blocks. For example, two 256×16-bit 
RAM blocks can be combined to form a 256×32-bit RAM block. Memory 
performance does not degrade for memory blocks using the maximum 
number of words allowed. Logical memory blocks using less than the 
maximum number of words use physical blocks in parallel, eliminating 
any external control logic that would increase delays. To create a larger 
high-speed memory block, the Quartus II software automatically 
combines memory blocks with LE control logic.

Parity Bit Support

The M4K blocks support a parity bit for each byte. The parity bit, along 
with internal LE logic, can implement parity checking for error detection 
to ensure data integrity. You can also use parity-size data words to store 
user-specified control bits. Byte enables are also available for data input 
masking during write operations.

Shift Register Support

You can configure M4K memory blocks to implement shift registers for 
DSP applications such as pseudo-random number generators, multi-
channel filtering, auto-correlation, and cross-correlation functions. These 
and other DSP applications require local data storage, traditionally 
implemented with standard flip-flops, which can quickly consume many 
logic cells and routing resources for large shift registers. A more efficient 
alternative is to use embedded memory as a shift register block, which 
saves logic cell and routing resources and provides a more efficient 
implementation with the dedicated circuitry.

The size of a w × m × n shift register is determined by the input data width 
(w), the length of the taps (m), and the number of taps (n). The size of a 
w × m × n shift register must be less than or equal to the maximum number 
of memory bits in the M4K block (4,608 bits). The total number of shift 
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register outputs (number of taps n × width w) must be less than the 
maximum data width of the M4K RAM block (×36). To create larger shift 
registers, multiple memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock 
and read from the address at the rising edge of the clock. The shift register 
mode logic automatically controls the positive and negative edge 
clocking to shift the data in one clock cycle. Figure 2–14 shows the M4K 
memory block in the shift register mode.

Figure 2–14. Shift Register Memory Configuration

Memory Configuration Sizes

The memory address depths and output widths can be configured as 
4,096 × 1, 2,048 × 2, 1,024 × 4, 512 × 8 (or 512 × 9 bits), 256 × 16 (or 256 × 18 
bits), and 128 × 32 (or 128 × 36 bits). The 128 × 32- or 36-bit configuration 
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is not available in the true dual-port mode. Mixed-width configurations 
are also possible, allowing different read and write widths. Tables 2–3 
and 2–4 summarize the possible M4K RAM block configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–3. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v

2K × 2 v v v v v v

1K × 4 v v v v v v

512 × 8 v v v v v v

256 × 16 v v v v v v

128 × 32 v v v v v v

512 × 9 v v v

256 × 18 v v v

128 × 36 v v v

Table 2–4. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v

2K × 2 v v v v v

1K × 4 v v v v v

512 × 8 v v v v v

256 × 16 v v v v v

512 × 9 v v

256 × 18 v v
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Byte Enables

M4K blocks support byte writes when the write port has a data width of 
16, 18, 32, or 36 bits. The byte enables allow the input data to be masked 
so the device can write to specific bytes. The unwritten bytes retain the 
previous written value. Table 2–5 summarizes the byte selection. 

Control Signals & M4K Interface

The M4K blocks allow for different clocks on their inputs and outputs. 
Either of the two clocks feeding the block can clock M4K block registers 
(renwe, address, byte enable, datain, and output registers). Only the 
output register can be bypassed. The six labclk signals or local 
interconnects can drive the control signals for the A and B ports of the 
M4K block. LEs can also control the clock_a, clock_b, renwe_a, 
renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as 
shown in Figure 2–15.

The R4, C4, and direct link interconnects from adjacent LABs drive the 
M4K block local interconnect. The M4K blocks can communicate with 
LABs on either the left or right side through these row resources or with 
LAB columns on either the right or left with the column resources. Up to 
10 direct link input connections to the M4K block are possible from the 
left adjacent LABs and another 10 possible from the right adjacent LAB. 
M4K block outputs can also connect to left and right LABs through 10 
direct link interconnects each. Figure 2–16 shows the M4K block to logic 
array interface.

Table 2–5. Byte Enable for M4K Blocks Notes (1), (2)

byteena[3..0] datain  × 18 datain  × 36

[0] = 1 [8..0] [8..0]

[1] = 1 [17..9] [17..9]

[2] = 1 – [26..18]

[3] = 1 – [35..27]

Notes to Table 2–5:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16 and 

× 32 modes.
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Figure 2–15. M4K RAM Block Control Signals

Figure 2–16. M4K RAM Block LAB Row Interface
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Independent Clock Mode

The M4K memory blocks implement independent clock mode for true 
dual-port memory. In this mode, a separate clock is available for each port 
(ports A and B). Clock A controls all registers on the port A side, while 
clock B controls all registers on the port B side. Each port, A and B, also 
supports independent clock enables and asynchronous clear signals for 
port A and B registers. Figure 2–17 shows an M4K memory block in 
independent clock mode.

Figure 2–17. Independent Clock Mode Notes (1), (2)

Notes to Figure 2–17:
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.

Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and 
simple dual-port memory modes. On each of the two ports, A or B, one 
clock controls all registers for inputs into the memory block: data input, 
wren, and address. The other clock controls the block's data output 
registers. Each memory block port, A or B, also supports independent 
clock enables and asynchronous clear signals for input and output 
registers. Figures 2–18 and 2–19 show the memory block in input/output 
clock mode.
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Figure 2–18. Input/Output Clock Mode in True Dual-Port Mode Note (1), (2)

Notes to Figure 2–18:
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Figure 2–19. Input/Output Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–19:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Read/Write Clock Mode

The M4K memory blocks implement read/write clock mode for simple 
dual-port memory. You can use up to two clocks in this mode. The write 
clock controls the block's data inputs, wraddress, and wren. The read 
clock controls the data output, rdaddress, and rden. The memory 
blocks support independent clock enables for each clock and 
asynchronous clear signals for the read- and write-side registers. 
Figure 2–20 shows a memory block in read/write clock mode.

Figure 2–20. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–20:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Single-Port Mode

The M4K memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–21. A single 
M4K memory block can support up to two single-port mode RAM blocks 
if each RAM block is less than or equal to 2K bits in size.

Figure 2–21. Single-Port Mode Note (1)

Note to Figure 2–21:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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The eight global clock lines in the global clock network drive throughout 
the entire device. The global clock network can provide clocks for all 
resources within the device ⎯ IOEs, LEs, and memory blocks. The global 
clock lines can also be used for control signals, such as clock enables and 
synchronous or asynchronous clears fed from the external pin, or DQS 
signals for DDR SDRAM or FCRAM interfaces. Internal logic can also 
drive the global clock network for internally generated global clocks and 
asynchronous clears, clock enables, or other control signals with large 
fanout. Figure 2–22 shows the various sources that drive the global clock 
network.

Figure 2–22. Global Clock Generation Note (1)

Notes to Figure 2–22:
(1) The EP1C3 device in the 100-pin TQFP package has five DPCLK pins (DPCLK2, DPCLK3, DPCLK4, DPCLK6, and 

DPCLK7).
(2) EP1C3 devices only contain one PLL (PLL 1).
(3) The EP1C3 device in the 100-pin TQFP package does not have dedicated clock pins CLK1 and CLK3.
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Dual-Purpose Clock Pins

Each Cyclone device except the EP1C3 device has eight dual-purpose 
clock pins, DPCLK[7..0] (two on each I/O bank). EP1C3 devices have 
five DPCLK pins in the 100-pin TQFP package. These dual-purpose pins 
can connect to the global clock network (see Figure 2–22) for high-fanout 
control signals such as clocks, asynchronous clears, presets, and clock 
enables, or protocol control signals such as TRDY and IRDY for PCI, or 
DQS signals for external memory interfaces.

Combined Resources

Each Cyclone device contains eight distinct dedicated clocking resources. 
The device uses multiplexers with these clocks to form six-bit buses to 
drive LAB row clocks, column IOE clocks, or row IOE clocks. See 
Figure 2–23. Another multiplexer at the LAB level selects two of the six 
LAB row clocks to feed the LE registers within the LAB.

Figure 2–23. Global Clock Network Multiplexers
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Figure 2–24. I/O Clock Regions
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Table 2–6 shows the PLL features in Cyclone devices. Figure 2–25 shows 
a Cyclone PLL.

Figure 2–25. Cyclone PLL Note (1)

Notes to Figure 2–25:
(1) The EP1C3 device in the 100-pin TQFP package does not support external outputs or LVDS inputs. The EP1C6 

device in the 144-pin TQFP package does not support external output from PLL2.
(2) LVDS input is supported via the secondary function of the dedicated clock pins. For PLL 1, the CLK0 pin’s secondary 

function is LVDSCLK1p and the CLK1 pin’s secondary function is LVDSCLK1n. For PLL 2, the CLK2 pin’s secondary 
function is LVDSCLK2p and the CLK3 pin’s secondary function is LVDSCLK2n.

(3) PFD: phase frequency detector.

Table 2–6. Cyclone PLL Features

Feature PLL Support

Clock multiplication and division m/(n ×  post-scale counter) (1)

Phase shift Down to 125-ps increments (2), (3)

Programmable duty cycle Yes

Number of internal clock outputs 2

Number of external clock outputs One differential or one single-ended (4)

Notes to Table 2–6:
(1) The m counter ranges from 2 to 32. The n counter and the post-scale counters 

range from 1 to 32.
(2) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) 

period divided by 8.
(3) For degree increments, Cyclone devices can shift all output frequencies in 

increments of 45°. Smaller degree increments are possible depending on the 
frequency and divide parameters.

(4) The EP1C3 device in the 100-pin TQFP package does not support external clock 
output. The EP1C6 device in the 144-pin TQFP package does not support external 
clock output from PLL2.
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Figure 2–26 shows the PLL global clock connections.

Figure 2–26. Cyclone PLL Global Clock Connections

Notes to Figure 2–26:
(1) PLL 1 supports one single-ended or LVDS input via pins CLK0 and CLK1.
(2) PLL2 supports one single-ended or LVDS input via pins CLK2 and CLK3.
(3) PLL1_OUT and PLL2_OUT support single-ended or LVDS output. If external output is not required, these pins are 

available as regular user I/O pins.
(4) The EP1C3 device in the 100-pin TQFP package does not support external clock output. The EP1C6 device in the 

144-pin TQFP package does not support external clock output from PLL2.

Table 2–7 shows the global clock network sources available in Cyclone 
devices.

CLK0

CLK1 (1)
PLL1 PLL2

g0

g1

e

g0

g1

e

PLL1_OUT (3), (4)

CLK2

CLK3 (2)

PLL2_OUT (3), (4)

G0 G2

G1 G3

G4 G6

G5 G7

Table 2–7. Global Clock Network Sources  (Part 1 of 2)

Source GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7

PLL Counter 
Output

PLL1 G0 v v

PLL1 G1 v v

PLL2 G0 (1) v v

PLL2 G1 (1) v v

Dedicated 
Clock Input 
Pins

CLK0 v v

CLK1 (2) v v

CLK2 v v

CLK3 (2) v v
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Clock Multiplication & Division

Cyclone PLLs provide clock synthesis for PLL output ports using 
m/(n × post scale counter) scaling factors. The input clock is divided by 
a pre-scale divider, n, and is then multiplied by the m feedback factor. The 
control loop drives the VCO to match fIN  × (m/n). Each output port has 
a unique post-scale counter to divide down the high-frequency VCO. For 
multiple PLL outputs with different frequencies, the VCO is set to the 
least-common multiple of the output frequencies that meets its frequency 
specifications. Then, the post-scale dividers scale down the output 
frequency for each output port. For example, if the output frequencies 
required from one PLL are 33 and 66 MHz, the VCO is set to 330 MHz (the 
least-common multiple in the VCO's range).

Each PLL has one pre-scale divider, n, that can range in value from 1 to 
32. Each PLL also has one multiply divider, m, that can range in value 
from 2 to 32. Global clock outputs have two post scale G dividers for 
global clock outputs, and external clock outputs have an E divider for 
external clock output, both ranging from 1 to 32. The Quartus II software 
automatically chooses the appropriate scaling factors according to the 
input frequency, multiplication, and division values entered.

Dual-Purpose 
Clock Pins

DPCLK0 (3) v

DPCLK1 (3) v

DPCLK2 v

DPCLK3 v

DPCLK4 v

DPCLK5 (3) v

DPCLK6 v

DPCLK7 v

Notes to Table 2–7:
(1) EP1C3 devices only have one PLL (PLL 1).
(2) EP1C3 devices in the 100-pin TQFP package do not have dedicated clock pins CLK1 and CLK3.
(3) EP1C3 devices in the 100-pin TQFP package do not have the DPCLK0, DPCLK1, or DPCLK5 pins.

Table 2–7. Global Clock Network Sources  (Part 2 of 2)

Source GCLK0 GCLK1 GCLK2 GCLK3 GCLK4 GCLK5 GCLK6 GCLK7
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External Clock Inputs

Each PLL supports single-ended or differential inputs for source-
synchronous receivers or for general-purpose use. The dedicated clock 
pins (CLK[3..0]) feed the PLL inputs. These dual-purpose pins can also 
act as LVDS input pins. See Figure 2–25.

Table 2–8 shows the I/O standards supported by PLL input and output 
pins.

For more information on LVDS I/O support, see “LVDS I/O Pins” on 
page 2–54.

External Clock Outputs

Each PLL supports one differential or one single-ended output for source-
synchronous transmitters or for general-purpose external clocks. If the 
PLL does not use these PLL_OUT pins, the pins are available for use as 
general-purpose I/O pins. The PLL_OUT pins support all I/O standards 
shown in Table 2–8.

The external clock outputs do not have their own VCC and ground voltage 
supplies. Therefore, to minimize jitter, do not place switching I/O pins 
next to these output pins. The EP1C3 device in the 100-pin TQFP package 

Table 2–8. PLL I/O Standards

I/O Standard CLK Input EXTCLK Output

3.3-V LVTTL/LVCMOS v v

2.5-V LVTTL/LVCMOS v v

1.8-V LVTTL/LVCMOS v v

1.5-V LVCMOS v v

3.3-V PCI v v

LVDS v v

SSTL-2 class I v v

SSTL-2 class II v v

SSTL-3 class I v v

SSTL-3 class II v v

Differential SSTL-2 v
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does not have dedicated clock output pins. The EP1C6 device in the 
144-pin TQFP package only supports dedicated clock outputs from 
PLL 1.

Clock Feedback

Cyclone PLLs have three modes for multiplication and/or phase shifting:

■ Zero delay buffer mode⎯The external clock output pin is phase-
aligned with the clock input pin for zero delay. 

■ Normal mode⎯If the design uses an internal PLL clock output, the 
normal mode compensates for the internal clock delay from the input 
clock pin to the IOE registers. The external clock output pin is phase 
shifted with respect to the clock input pin if connected in this mode. 
You defines which internal clock output from the PLL should be 
phase-aligned to compensate for internal clock delay.

■ No compensation mode⎯In this mode, the PLL will not compensate 
for any clock networks.

Phase Shifting

Cyclone PLLs have an advanced clock shift capability that enables 
programmable phase shifts. You can enter a phase shift (in degrees or 
time units) for each PLL clock output port or for all outputs together in 
one shift. You can perform phase shifting in time units with a resolution 
range of 125 to 250 ps. The finest resolution equals one eighth of the VCO 
period. The VCO period is a function of the frequency input and the 
multiplication and division factors. Each clock output counter can choose 
a different phase of the VCO period from up to eight taps. You can use this 
clock output counter along with an initial setting on the post-scale 
counter to achieve a phase-shift range for the entire period of the output 
clock. The phase tap feedback to the m counter can shift all outputs to a 
single phase. The Quartus II software automatically sets the phase taps 
and counter settings according to the phase shift entered.

Lock Detect Signal

The lock output indicates that there is a stable clock output signal in 
phase with the reference clock. Without any additional circuitry, the lock 
signal may toggle as the PLL begins tracking the reference clock. 
Therefore, you may need to gate the lock signal for use as a system-
control signal. For correct operation of the lock circuit below
–20 C, fIN/N > 200 MHz.
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Programmable Duty Cycle

The programmable duty cycle allows PLLs to generate clock outputs with 
a variable duty cycle. This feature is supported on each PLL post-scale 
counter (g0, g1, e). The duty cycle setting is achieved by a low- and high-
time count setting for the post-scale dividers. The Quartus II software 
uses the frequency input and the required multiply or divide rate to 
determine the duty cycle choices.

Control Signals

There are three control signals for clearing and enabling PLLs and their 
outputs. You can use these signals to control PLL resynchronization and 
the ability to gate PLL output clocks for low-power applications.

The pllenable signal enables and disables PLLs. When the pllenable 
signal is low, the clock output ports are driven by ground and all the PLLs 
go out of lock. When the pllenable signal goes high again, the PLLs 
relock and resynchronize to the input clocks. An input pin or LE output 
can drive the pllenable signal.

The areset signals are reset/resynchronization inputs for each PLL. 
Cyclone devices can drive these input signals from input pins or from 
LEs. When areset is driven high, the PLL counters will reset, clearing 
the PLL output and placing the PLL out of lock. When driven low again, 
the PLL will resynchronize to its input as it relocks. 

The pfdena signals control the phase frequency detector (PFD) output 
with a programmable gate. If you disable the PFD, the VCO will operate 
at its last set value of control voltage and frequency with some drift, and 
the system will continue running when the PLL goes out of lock or the 
input clock disables. By maintaining the last locked frequency, the system 
has time to store its current settings before shutting down. You can either 
use their own control signal or gated locked status signals to trigger the 
pfdena signal.

f For more information on Cyclone PLLs, see Chapter 6, Using PLLs in 
Cyclone Devices.
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I/O Structure IOEs support many features, including:

■ Differential and single-ended I/O standards
■ 3.3-V, 64- and 32-bit, 66- and 33-MHz PCI compliance
■ Joint Test Action Group (JTAG) boundary-scan test (BST) support
■ Output drive strength control
■ Weak pull-up resistors during configuration
■ Slew-rate control
■ Tri-state buffers
■ Bus-hold circuitry
■ Programmable pull-up resistors in user mode
■ Programmable input and output delays
■ Open-drain outputs
■ DQ and DQS I/O pins

Cyclone device IOEs contain a bidirectional I/O buffer and three registers 
for complete embedded bidirectional single data rate transfer. 
Figure 2–27 shows the Cyclone IOE structure. The IOE contains one input 
register, one output register, and one output enable register. You can use 
the input registers for fast setup times and output registers for fast clock-
to-output times. Additionally, you can use the output enable (OE) register 
for fast clock-to-output enable timing. The Quartus II software 
automatically duplicates a single OE register that controls multiple 
output or bidirectional pins. IOEs can be used as input, output, or 
bidirectional pins.
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Figure 2–27. Cyclone IOE Structure

Note to Figure 2–27:
(1) There are two paths available for combinatorial inputs to the logic array. Each path 

contains a unique programmable delay chain.

The IOEs are located in I/O blocks around the periphery of the Cyclone 
device. There are up to three IOEs per row I/O block and up to three IOEs 
per column I/O block (column I/O blocks span two columns). The row 
I/O blocks drive row, column, or direct link interconnects. The column 
I/O blocks drive column interconnects. Figure 2–28 shows how a row 
I/O block connects to the logic array. Figure 2–29 shows how a column 
I/O block connects to the logic array.
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Figure 2–28. Row I/O Block Connection to the Interconnect

Notes to Figure 2–28:
(1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, 

io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], 
three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear 
signals, io_csclr[2..0].

(2) Each of the three IOEs in the row I/O block can have one io_datain input (combinatorial or registered) and one 
comb_io_datain (combinatorial) input.

21

R4 Interconnects C4 Interconnects

I/O Block Local 
Interconnect

21 Data and
Control Signals
from Logic Array (1)

io_datain[2..0] and
comb_io_datain[2..0] (2)
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Figure 2–29. Column I/O Block Connection to the Interconnect

Notes to Figure 2–29:
(1) The 21 data and control signals consist of three data out lines, io_dataout[2..0], three output enables, 

io_coe[2..0], three input clock enables, io_cce_in[2..0], three output clock enables, io_cce_out[2..0], 
three clocks, io_cclk[2..0], three asynchronous clear signals, io_caclr[2..0], and three synchronous clear 
signals, io_csclr[2..0].

(2) Each of the three IOEs in the column I/O block can have one io_datain input (combinatorial or registered) and 
one comb_io_datain (combinatorial) input.

21 Data &
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from Logic Array (1)
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I/O Block
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The pin's datain signals can drive the logic array. The logic array drives 
the control and data signals, providing a flexible routing resource. The 
row or column IOE clocks, io_clk[5..0], provide a dedicated routing 
resource for low-skew, high-speed clocks. The global clock network 
generates the IOE clocks that feed the row or column I/O regions (see 
“Global Clock Network & Phase-Locked Loops” on page 2–29). 
Figure 2–30 illustrates the signal paths through the I/O block.

Figure 2–30. Signal Path through the I/O Block

Each IOE contains its own control signal selection for the following 
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, 
clk_in, and clk_out. Figure 2–31 illustrates the control signal 
selection.
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Figure 2–31. Control Signal Selection per IOE

In normal bidirectional operation, you can use the input register for input 
data requiring fast setup times. The input register can have its own clock 
input and clock enable separate from the OE and output registers. The 
output register can be used for data requiring fast clock-to-output 
performance. The OE register is available for fast clock-to-output enable 
timing. The OE and output register share the same clock source and the 
same clock enable source from the local interconnect in the associated 
LAB, dedicated I/O clocks, or the column and row interconnects. 
Figure 2–32 shows the IOE in bidirectional configuration.

clk_out

ce_inclk_in

ce_out

aclr/preset

sclr/preset

Dedicated I/O
Clock [5..0]

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

oe

io_coe

io_caclr

Local
Interconnect

io_csclr

io_cce_out

io_cce_in

io_cclk



Altera Corporation  2–45
January 2007 Preliminary

I/O Structure

Figure 2–32. Cyclone IOE in Bidirectional I/O Configuration

The Cyclone device IOE includes programmable delays to ensure zero 
hold times, minimize setup times, or increase clock to output times.

A path in which a pin directly drives a register may require a 
programmable delay to ensure zero hold time, whereas a path in which a 
pin drives a register through combinatorial logic may not require the 
delay. Programmable delays decrease input-pin-to-logic-array and IOE 
input register delays. The Quartus II Compiler can program these delays 
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to automatically minimize setup time while providing a zero hold time. 
Programmable delays can increase the register-to-pin delays for output 
registers. Table 2–9 shows the programmable delays for Cyclone devices.

There are two paths in the IOE for a combinatorial input to reach the logic 
array. Each of the two paths can have a different delay. This allows you 
adjust delays from the pin to internal LE registers that reside in two 
different areas of the device. The designer sets the two combinatorial 
input delays by selecting different delays for two different paths under 
the Decrease input delay to internal cells logic option in the Quartus II 
software. When the input signal requires two different delays for the 
combinatorial input, the input register in the IOE is no longer available.

The IOE registers in Cyclone devices share the same source for clear or 
preset. The designer can program preset or clear for each individual IOE. 
The designer can also program the registers to power up high or low after 
configuration is complete. If programmed to power up low, an 
asynchronous clear can control the registers. If programmed to power up 
high, an asynchronous preset can control the registers. This feature 
prevents the inadvertent activation of another device's active-low input 
upon power up. If one register in an IOE uses a preset or clear signal then 
all registers in the IOE must use that same signal if they require preset or 
clear. Additionally a synchronous reset signal is available to the designer 
for the IOE registers.

External RAM Interfacing

Cyclone devices support DDR SDRAM and FCRAM interfaces at up to 
133 MHz through dedicated circuitry.

DDR SDRAM & FCRAM

Cyclone devices have dedicated circuitry for interfacing with DDR 
SDRAM. All I/O banks support DDR SDRAM and FCRAM I/O pins. 
However, the configuration input pins in bank 1 must operate at 2.5 V 
because the SSTL-2 VCCIO level is 2.5 V. Additionally, the configuration 

Table 2–9. Cyclone Programmable Delay Chain

Programmable Delays Quartus II Logic Option

Input pin to logic array delay Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input registers

Output pin delay Increase delay to output pin
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output pins (nSTATUS and CONF_DONE) and all the JTAG pins in I/O 
bank 3 must operate at 2.5 V because the VCCIO level of SSTL-2 is 2.5 V. 
I/O banks 1, 2, 3, and 4 support DQS signals with DQ bus modes of  × 8.

For  × 8 mode, there are up to eight groups of programmable DQS and DQ 
pins, I/O banks 1, 2, 3, and 4 each have two groups in the 324-pin and 
400-pin FineLine BGA packages. Each group consists of one DQS pin, a 
set of eight DQ pins, and one DM pin (see Figure 2–33). Each DQS pin 
drives the set of eight DQ pins within that group.

Figure 2–33. Cyclone Device DQ & DQS Groups in  × 8 Mode Note (1)

Note to Figure 2–33:
(1) Each DQ group consists of one DQS pin, eight DQ pins, and one DM pin.

Table 2–10 shows the number of DQ pin groups per device.

DQ Pins DQS Pin DM Pin

Top, Bottom, Left, or Right I/O Bank

Table 2–10. DQ Pin Groups  (Part 1 of 2)

Device Package Number of  × 8 DQ 
Pin Groups

Total DQ Pin 
Count

EP1C3 100-pin TQFP (1) 3 24

144-pin TQFP 4 32

EP1C4 324-pin FineLine BGA 8 64

400-pin FineLine BGA 8 64
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A programmable delay chain on each DQS pin allows for either a 90° 
phase shift (for DDR SDRAM), or a 72° phase shift (for FCRAM) which 
automatically center-aligns input DQS synchronization signals within the 
data window of their corresponding DQ data signals. The phase-shifted 
DQS signals drive the global clock network. This global DQS signal clocks 
DQ signals on internal LE registers.

These DQS delay elements combine with the PLL’s clocking and phase 
shift ability to provide a complete hardware solution for interfacing to 
high-speed memory.

The clock phase shift allows the PLL to clock the DQ output enable and 
output paths. The designer should use the following guidelines to meet 
133 MHz performance for DDR SDRAM and FCRAM interfaces:

■ The DQS signal must be in the middle of the DQ group it clocks
■ Resynchronize the incoming data to the logic array clock using 

successive LE registers or FIFO buffers
■ LE registers must be placed in the LAB adjacent to the DQ I/O pin 

column it is fed by

Figure 2–34 illustrates DDR SDRAM and FCRAM interfacing from the 
I/O through the dedicated circuitry to the logic array.

EP1C6 144-pin TQFP 4 32

240-pin PQFP 4 32

256-pin FineLine BGA 4 32

EP1C12 240-pin PQFP 4 32

256-pin FineLine BGA 4 32

324-pin FineLine BGA 8 64

EP1C20 324-pin FineLine BGA 8 64

400-pin FineLine BGA 8 64

Note to Table 2–10:
(1) EP1C3 devices in the 100-pin TQFP package do not have any DQ pin groups in 

I/O bank 1.

Table 2–10. DQ Pin Groups  (Part 2 of 2)

Device Package Number of  × 8 DQ 
Pin Groups

Total DQ Pin 
Count



Altera Corporation  2–49
January 2007 Preliminary

I/O Structure

Figure 2–34. DDR SDRAM & FCRAM Interfacing

Programmable Drive Strength

The output buffer for each Cyclone device I/O pin has a programmable 
drive strength control for certain I/O standards. The LVTTL and 
LVCMOS standards have several levels of drive strength that the designer 
can control. SSTL-3 class I and II, and SSTL-2 class I and II support a 
minimum setting, the lowest drive strength that guarantees the IOH/IOL 
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of the standard. Using minimum settings provides signal slew rate 
control to reduce system noise and signal overshoot. Table 2–11 shows the 
possible settings for the I/O standards with drive strength control.

Open-Drain Output

Cyclone devices provide an optional open-drain (equivalent to an open-
collector) output for each I/O pin. This open-drain output enables the 
device to provide system-level control signals (e.g., interrupt and write-
enable signals) that can be asserted by any of several devices.

Table 2–11. Programmable Drive Strength Note (1)

I/O Standard IOH/IOL Current Strength Setting (mA)

LVTTL (3.3 V) 4

8

12

16

24(2)

LVCMOS (3.3 V) 2

4

8

12(2)

LVTTL (2.5 V) 2

8

12

16(2)

LVTTL (1.8 V) 2

8

12(2)

LVCMOS (1.5 V) 2

4

8(2)

Notes to Table 2–11:
(1) SSTL-3 class I and II, SSTL-2 class I and II, and 3.3-V PCI I/O Standards do not 

support programmable drive strength.
(2) This is the default current strength setting in the Quartus II software.
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Slew-Rate Control

The output buffer for each Cyclone device I/O pin has a programmable 
output slew-rate control that can be configured for low noise or high-
speed performance. A faster slew rate provides high-speed transitions for 
high-performance systems. However, these fast transitions may 
introduce noise transients into the system. A slow slew rate reduces 
system noise, but adds a nominal delay to rising and falling edges. Each 
I/O pin has an individual slew-rate control, allowing the designer to 
specify the slew rate on a pin-by-pin basis. The slew-rate control affects 
both the rising and falling edges.

Bus Hold

Each Cyclone device I/O pin provides an optional bus-hold feature. The 
bus-hold circuitry can hold the signal on an I/O pin at its last-driven 
state. Since the bus-hold feature holds the last-driven state of the pin until 
the next input signal is present, an external pull-up or pull-down resistor 
is not necessary to hold a signal level when the bus is tri-stated. 

The bus-hold circuitry also pulls undriven pins away from the input 
threshold voltage where noise can cause unintended high-frequency 
switching. The designer can select this feature individually for each I/O 
pin. The bus-hold output will drive no higher than VCCIO to prevent 
overdriving signals. If the bus-hold feature is enabled, the device cannot 
use the programmable pull-up option. Disable the bus-hold feature when 
the I/O pin is configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of 
approximately 7 kΩ to pull the signal level to the last-driven state. 
Table 4–15 on page 4–6 gives the specific sustaining current for each 
VCCIO voltage level driven through this resistor and overdrive current 
used to identify the next-driven input level. 

The bus-hold circuitry is only active after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration.

Programmable Pull-Up Resistor

Each Cyclone device I/O pin provides an optional programmable pull-
up resistor during user mode. If the designer enables this feature for an 
I/O pin, the pull-up resistor (typically 25 kΩ) holds the output to the 
VCCIO level of the output pin's bank. Dedicated clock pins do not have the 
optional programmable pull-up resistor.
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Advanced I/O Standard Support

Cyclone device IOEs support the following I/O standards:

■ 3.3-V LVTTL/LVCMOS
■ 2.5-V LVTTL/LVCMOS
■ 1.8-V LVTTL/LVCMOS
■ 1.5-V LVCMOS
■ 3.3-V PCI
■ LVDS
■ RSDS
■ SSTL-2 class I and II
■ SSTL-3 class I and II
■ Differential SSTL-2 class II (on output clocks only)

Table 2–12 describes the I/O standards supported by Cyclone devices.

Cyclone devices contain four I/O banks, as shown in Figure 2–35. I/O 
banks 1 and 3 support all the I/O standards listed in Table 2–12. I/O 
banks 2 and 4 support all the I/O standards listed in Table 2–12 except the 
3.3-V PCI standard. I/O banks 2 and 4 contain dual-purpose DQS, DQ, 

Table 2–12. Cyclone I/O Standards

I/O Standard Type
Input Reference 

Voltage (VREF) (V)
Output Supply 

Voltage (VCCIO) (V)

Board 
Termination 

Voltage (VTT) (V)

3.3-V LVTTL/LVCMOS Single-ended N/A 3.3 N/A

2.5-V LVTTL/LVCMOS Single-ended N/A 2.5 N/A

1.8-V LVTTL/LVCMOS Single-ended N/A 1.8 N/A

1.5-V LVCMOS Single-ended N/A 1.5 N/A

3.3-V PCI (1) Single-ended N/A 3.3 N/A

LVDS (2) Differential N/A 2.5 N/A

RSDS (2) Differential N/A 2.5 N/A

SSTL-2 class I and II Voltage-referenced 1.25 2.5 1.25

SSTL-3 class I and II Voltage-referenced 1.5 3.3 1.5

Differential SSTL-2 (3) Differential 1.25 2.5 1.25

Notes to Table 2–12:
(1) There is no megafunction support for EP1C3 devices for the PCI compiler. However, EP1C3 devices support PCI 

by using the LVTTL 16-mA I/O standard and drive strength assignments in the Quartus II software. The device 
requires an external diode for PCI compliance.

(2) EP1C3 devices in the 100-pin TQFP package do not support the LVDS and RSDS I/O standards.
(3) This I/O standard is only available on output clock pins (PLL_OUT pins). EP1C3 devices in the 100-pin package 

do not support this I/O standard as it does not have PLL_OUT pins.
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I/O Structure

and DM pins to support a DDR SDRAM or FCRAM interface. I/O bank 
1 can also support a DDR SDRAM or FCRAM interface, however, the 
configuration input pins in I/O bank 1 must operate at 2.5 V. I/O bank 3 
can also support a DDR SDRAM or FCRAM interface, however, all the 
JTAG pins in I/O bank 3 must operate at 2.5 V.

Figure 2–35. Cyclone I/O Banks Notes (1), (2)

Notes to Figure 2–35:
(1) Figure 2–35 is a top view of the silicon die.
(2) Figure 2–35 is a graphic representation only. Refer to the pin list and the Quartus II software for exact pin locations.

Each I/O bank has its own VCCIO pins. A single device can support 1.5-V, 
1.8-V, 2.5-V, and 3.3-V interfaces; each individual bank can support a 
different standard with different I/O voltages. Each bank also has dual-
purpose VREF pins to support any one of the voltage-referenced 
standards (e.g., SSTL-3) independently. If an I/O bank does not use 
voltage-referenced standards, the VREF pins are available as user I/O pins.

I/O Bank 2

I/O Bank 3

I/O Bank 4

I/O Bank 1

All I/O Banks Support
■  3.3-V LVTTL/LVCMOS 
■  2.5-V LVTTL/LVCMOS
■  1.8-V LVTTL/LVCMOS
■  1.5-V LVCMOS
■  LVDS
■  RSDS
■  SSTL-2 Class I and II
■  SSTL-3 Class I and II

I/O Bank 3
Also Supports
the 3.3-V PCI
I/O Standard

I/O Bank 1
Also Supports
the 3.3-V PCI
I/O Standard

Individual
Power Bus
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Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. For example, when VCCIO is 3.3-V, a bank can 
support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

LVDS I/O Pins

A subset of pins in all four I/O banks supports LVDS interfacing. These 
dual-purpose LVDS pins require an external-resistor network at the 
transmitter channels in addition to 100-Ω termination resistors on receiver 
channels. These pins do not contain dedicated serialization or 
deserialization circuitry; therefore, internal logic performs serialization 
and deserialization functions.

Table 2–13 shows the total number of supported LVDS channels per 
device density.

MultiVolt I/O Interface

The Cyclone architecture supports the MultiVolt I/O interface feature, 
which allows Cyclone devices in all packages to interface with systems of 
different supply voltages. The devices have one set of VCC pins for 
internal operation and input buffers (VCCINT), and four sets for I/O 
output drivers (VCCIO).

Table 2–13. Cyclone Device LVDS Channels

Device Pin Count Number of LVDS Channels

EP1C3 100 (1)

144 34

EP1C4 324 103

400 129

EP1C6 144 29

240 72

256 72

EP1C12 240 66

256 72

324 103

EP1C20 324 95

400 129

Note to Table 2–13:
(1) EP1C3 devices in the 100-pin TQFP package do not support the LVDS I/O 

standard.
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Power Sequencing & Hot Socketing

The Cyclone VCCINT pins must always be connected to a 1.5-V power 
supply. If the VCCINT level is 1.5 V, then input pins are 1.5-V, 1.8-V, 2.5-V, 
and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 
2.5-V, or 3.3-V power supply, depending on the output requirements. The 
output levels are compatible with systems of the same voltage as the 
power supply (i.e., when VCCIO pins are connected to a 1.5-V power 
supply, the output levels are compatible with 1.5-V systems). When VCCIO 
pins are connected to a 3.3-V power supply, the output high is 3.3-V and 
is compatible with 3.3-V or 5.0-V systems. Table 2–14 summarizes 
Cyclone MultiVolt I/O support.

Power 
Sequencing & 
Hot Socketing

Because Cyclone devices can be used in a mixed-voltage environment, 
they have been designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Signals can be driven into Cyclone devices before and during power up 
without damaging the device. In addition, Cyclone devices do not drive 
out during power up. Once operating conditions are reached and the 
device is configured, Cyclone devices operate as specified by the user.

Table 2–14. Cyclone MultiVolt I/O Support Note (1)

VCCIO (V)
Input Signal Output Signal

1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V

1.5 v v v (2) v (2) v

1.8 v v v (2) v (2) v (3) v

2.5 v v v (5) v (5) v

3.3 v (4) v v (6) v (7) v (7) v (7) v v (8)

Notes to Table 2–14:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher than VCCIO.
(2) When VCCIO = 1.5-V or 1.8-V and a 2.5-V or 3.3-V input signal feeds an input pin, higher pin leakage current is 

expected. Turn on Allow voltage overdrive for LVTTL / LVCMOS input pins in the Assignments > Device > 
Device and Pin Options > Pin Placement tab when a device has this I/O combinations.

(3) When VCCIO = 1.8-V, a Cyclone device can drive a 1.5-V device with 1.8-V tolerant inputs.
(4) When VCCIO = 3.3-V and a 2.5-V input signal feeds an input pin, the VCCIO supply current will be slightly larger 

than expected.
(5) When VCCIO = 2.5-V, a Cyclone device can drive a 1.5-V or 1.8-V device with 2.5-V tolerant inputs.
(6) Cyclone devices can be 5.0-V tolerant with the use of an external resistor and the internal PCI clamp diode.
(7) When VCCIO = 3.3-V, a Cyclone device can drive a 1.5-V, 1.8-V, or 2.5-V device with 3.3-V tolerant inputs.
(8) When VCCIO = 3.3-V, a Cyclone device can drive a device with 5.0-V LVTTL inputs but not 5.0-V LVCMOS inputs.
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Document 
Revision History

Table 2–15 shows the revision history for this document.

Table 2–15. Document Revision History

Date & 
Document 

Version
Changes Made Summary of Changes

January 2007 
v1.5

● Added document revision history.
● Updated Figures 2–17, 2–18, 2–19, 2–20, 2–21, and 2–32.

August 2005 
v1.4

Minor updates.

February 2005 
v1.3

● Updated JTAG chain limits. Added test vector information.
● Corrected Figure 2-12.
● Added a note to Tables 2-17 through 2-21 regarding violating 

the setup or hold time.

October 2003 
v1.2

● Updated phase shift information.
● Added 64-bit PCI support information.

September 
2003 v1.1

Updated LVDS data rates to 640 Mbps from 311 Mbps.

May 2003 v1.0 Added document to Cyclone Device Handbook.
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3. Configuration & Testing

IEEE Std. 1149.1 
(JTAG) Boundary 
Scan Support

All Cyclone® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Cyclone 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc).

Cyclone devices support reconfiguring the I/O standard settings on the 
IOE through the JTAG BST chain. The JTAG chain can update the I/O 
standard for all input and output pins any time before or during user 
mode. Designers can use this ability for JTAG testing before configuration 
when some of the Cyclone pins drive or receive from other devices on the 
board using voltage-referenced standards. Since the Cyclone device 
might not be configured before JTAG testing, the I/O pins might not be 
configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows 
designers to fully test I/O connection to other devices.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The bank VCCIO selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Cyclone devices also use the JTAG port to monitor the operation of the 
device with the SignalTap® II embedded logic analyzer. Cyclone devices 
support the JTAG instructions shown in Table 3–1.

Table 3–1. Cyclone JTAG Instructions  (Part 1 of 2)

JTAG Instruction Instruction Code Description

SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured and 
examined during normal device operation, and permits an initial 
data pattern to be output at the device pins. Also used by the 
SignalTap II embedded logic analyzer.

EXTEST (1) 00 0000 0000 Allows the external circuitry and board-level interconnects to be 
tested by forcing a test pattern at the output pins and capturing test 
results at the input pins.

BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation.

C51003-1.3
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In the Quartus II software, there is an Auto Usercode feature where you 
can choose to use the checksum value of a programming file as the JTAG 
user code. If selected, the checksum is automatically loaded to the 
USERCODE register. Choose Assignments > Device > Device and Pin 
Options > General. Turn on Auto Usercode.

USERCODE 00 0000 0111 Selects the 32-bit USERCODE register and places it between the 
TDI and TDO pins, allowing the USERCODE to be serially shifted 
out of TDO.

IDCODE 00 0000 0110 Selects the IDCODE register and places it between TDI and TDO, 
allowing the IDCODE to be serially shifted out of TDO.

HIGHZ (1) 00 0000 1011 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation, while 
tri-stating all of the I/O pins.

CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO pins, 
which allows the BST data to pass synchronously through selected 
devices to adjacent devices during normal device operation while 
holding I/O pins to a state defined by the data in the boundary-scan 
register.

ICR instructions Used when configuring a Cyclone device via the JTAG port with a 
MasterBlasterTM or ByteBlasterMVTM download cable, or when 
using a Jam File or Jam Byte-Code File via an embedded 
processor.

PULSE_NCONFIG 00 0000 0001 Emulates pulsing the nCONFIG pin low to trigger reconfiguration 
even though the physical pin is unaffected.

CONFIG_IO 00 0000 1101 Allows configuration of I/O standards through the JTAG chain for 
JTAG testing. Can be executed before, after, or during 
configuration. Stops configuration if executed during configuration. 
Once issued, the CONFIG_IO instruction will hold nSTATUS low 
to reset the configuration device. nSTATUS is held low until the 
device is reconfigured.

SignalTap II 
instructions

Monitors internal device operation with the SignalTap II embedded 
logic analyzer.

Note to Table 3–1:
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.

Table 3–1. Cyclone JTAG Instructions  (Part 2 of 2)

JTAG Instruction Instruction Code Description
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IEEE Std. 1149.1 (JTAG) Boundary Scan Support

The Cyclone device instruction register length is 10 bits and the 
USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the 
boundary-scan register length and device IDCODE information for 
Cyclone devices.

Table 3–2. Cyclone Boundary-Scan Register Length

Device Boundary-Scan Register Length

EP1C3 339

EP1C4 930

EP1C6 582

EP1C12 774

EP1C20 930

Table 3–3. 32-Bit Cyclone Device IDCODE

Device

IDCODE (32 bits) (1)

Version (4 Bits) Part Number (16 Bits) Manufacturer Identity 
(11 Bits) LSB (1 Bit) (2)

EP1C3 0000 0010 0000 1000 0001 000 0110 1110 1

EP1C4 0000 0010 0000 1000 0101 000 0110 1110 1

EP1C6 0000 0010 0000 1000 0010 000 0110 1110 1

EP1C12 0000 0010 0000 1000 0011 000 0110 1110 1

EP1C20 0000 0010 0000 1000 0100 000 0110 1110 1

Notes to Table 3–3:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE’s least significant bit (LSB) is always 1.
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Figure 3–1 shows the timing requirements for the JTAG signals.

Figure 3–1. Cyclone JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Cyclone 
devices.

Table 3–4. Cyclone JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJ C P TCK clock period  100 ns

tJ C H TCK clock high time 50 ns

tJ C L TCK clock low time 50 ns

tJ P S U JTAG port setup time 20 ns

tJ P H JTAG port hold time 45 ns

tJ P CO JTAG port clock to output 25 ns

tJ P Z X JTAG port high impedance to valid output 25 ns

tJ P X Z JTAG port valid output to high impedance 25 ns

tJ S S U Capture register setup time 20 ns

tJ S H Capture register hold time 45 ns

tJ S CO Update register clock to output 35 ns

tJ S Z X Update register high impedance to valid output 35 ns

tJ S X Z Update register valid output to high impedance 35 ns

TDO

TCK

tJPZX tJPCO

tJPH

t JPXZ

 tJCP

 tJPSU t JCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to Be

Driven

tJSZX

tJSSU tJSH

tJSCO tJSXZ
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SignalTap II Embedded Logic Analyzer

1 Cyclone devices must be within the first 8 devices in a JTAG 
chain. All of these devices have the same JTAG controller. If any 
of the Cyclone devices are in the 9th or after they will fail 
configuration. This does not affect the SignalTap® II logic 
analyzer. 

f For more information on JTAG, see the following documents:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
■ Jam Programming & Test Language Specification

SignalTap II 
Embedded Logic 
Analyzer

Cyclone devices feature the SignalTap II embedded logic analyzer, which 
monitors design operation over a period of time through the IEEE 
Std. 1149.1 (JTAG) circuitry. A designer can analyze internal logic at speed 
without bringing internal signals to the I/O pins. This feature is 
particularly important for advanced packages, such as FineLine BGA 
packages, because it can be difficult to add a connection to a pin during 
the debugging process after a board is designed and manufactured.

Configuration The logic, circuitry, and interconnects in the Cyclone architecture are 
configured with CMOS SRAM elements. Altera FPGAs are 
reconfigurable and every device is tested with a high coverage 
production test program so the designer does not have to perform fault 
testing and can instead focus on simulation and design verification.

Cyclone devices are configured at system power-up with data stored in 
an Altera configuration device or provided by a system controller. The 
Cyclone device's optimized interface allows the device to act as controller 
in an active serial configuration scheme with the new low-cost serial 
configuration device. Cyclone devices can be configured in under 120 ms 
using serial data at 20 MHz. The serial configuration device can be 
programmed via the ByteBlaster II download cable, the Altera 
Programming Unit (APU), or third-party programmers.

In addition to the new low-cost serial configuration device, Altera offers 
in-system programmability (ISP)-capable configuration devices that can 
configure Cyclone devices via a serial data stream. The interface also 
enables microprocessors to treat Cyclone devices as memory and 
configure them by writing to a virtual memory location, making 
reconfiguration easy. After a Cyclone device has been configured, it can 
be reconfigured in-circuit by resetting the device and loading new data. 
Real-time changes can be made during system operation, enabling 
innovative reconfigurable computing applications.
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Operating Modes

The Cyclone architecture uses SRAM configuration elements that require 
configuration data to be loaded each time the circuit powers up. The 
process of physically loading the SRAM data into the device is called 
configuration. During initialization, which occurs immediately after 
configuration, the device resets registers, enables I/O pins, and begins to 
operate as a logic device. Together, the configuration and initialization 
processes are called command mode. Normal device operation is called 
user mode.

SRAM configuration elements allow Cyclone devices to be reconfigured 
in-circuit by loading new configuration data into the device. With real-
time reconfiguration, the device is forced into command mode with a 
device pin. The configuration process loads different configuration data, 
reinitializes the device, and resumes user-mode operation. Designers can 
perform in-field upgrades by distributing new configuration files either 
within the system or remotely.

A built-in weak pull-up resistor pulls all user I/O pins to VCCIO before 
and during device configuration.

The configuration pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O 
standards. The voltage level of the configuration output pins is 
determined by the VCCIO of the bank where the pins reside. The bank 
VCCIO selects whether the configuration inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible.

Configuration Schemes

Designers can load the configuration data for a Cyclone device with one 
of three configuration schemes (see Table 3–5), chosen on the basis of the 
target application. Designers can use a configuration device, intelligent 
controller, or the JTAG port to configure a Cyclone device. A low-cost 
configuration device can automatically configure a Cyclone device at 
system power-up.
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Document Revision History

Multiple Cyclone devices can be configured in any of the three 
configuration schemes by connecting the configuration enable (nCE) and 
configuration enable output (nCEO) pins on each device.

Document 
Revision History

Table 3–6 shows the revision history for this document.

Table 3–5. Data Sources for Configuration

Configuration Scheme Data Source

Active serial Low-cost serial configuration device

Passive serial (PS) Enhanced or EPC2 configuration device, 
MasterBlaster or ByteBlasterMV download cable, 
or serial data source

JTAG MasterBlaster or ByteBlasterMV download cable 
or a microprocessor with a Jam or JBC file

Table 3–6. Document Revision History

Date & 
Document 

Version
Changes Made Summary of Changes

January 2007 
v1.3

● Added document revision history.
● Updated handpara note below Table 3–4.

August 2005 
V1.2

Minor updates.

February 2005 
V1.1

Updated JTAG chain limits. Added information concerning test 
vectors.

May 2003 v1.0 Added document to Cyclone Device Handbook.
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4. DC & Switching
Characteristics

Operating 
Conditions

Cyclone® devices are offered in both commercial, industrial, and 
extended temperature grades. However, industrial-grade and extended-
temperature-grade devices may have limited speed-grade availability.

Tables 4–1 through 4–16 provide information on absolute maximum 
ratings, recommended operating conditions, DC operating conditions, 
and capacitance for Cyclone devices.

Table 4–1. Cyclone Device Absolute Maximum Ratings Notes (1), (2)

Symbol Parameter Conditions Minimum Maximum Unit

VCCINT Supply voltage With respect to ground (3) –0.5 2.4 V

VCCIO –0.5 4.6 V

VCCA Supply voltage With respect to ground (3) –0.5 2.4 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 °  C

TAMB Ambient temperature Under bias –65 135 °  C

TJ Junction temperature BGA packages under bias 135 °  C

Table 4–2. Cyclone Device Recommended Operating Conditions  (Part 1 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit

VCCINT Supply voltage for internal logic 
and input buffers

(4) 1.425 1.575 V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(4) 3.00 3.60 V

Supply voltage for output buffers, 
2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output buffers, 
1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output buffers, 
1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (5) –0.5 4.1 V

C51004-1.6
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VO Output voltage 0 VCCIO V

TJ Operating junction temperature For commercial 
use

0 85 °  C

For industrial use –40 100 °  C

For extended-
temperature use

–40 125 °  C

Table 4–3. Cyclone Device DC Operating Conditions Note (6)

Symbol Parameter Conditions Minimum Typica
l Maximum Unit

II Input pin leakage current VI = VC C I O m a x to 0 V (8) –10 10 μA

IOZ Tri-stated I/O pin leakage 
current

VO = VC C I O m a x  to 0 V (8) –10 10 μA

ICC0 VCC supply current (standby) 
(All M4K blocks in power-down 
mode) (7)

EP1C3 4 mA

EP1C4 6 mA

EP1C6 6 mA

EP1C12 8 mA

EP1C20 12 mA

RCONF (9) Value of I/O pin pull-up resistor 
before and during configuration

VI = 0 V; VCCI0 = 3.3 V 15 25 50 kΩ

VI = 0 V; VCCI0 = 2.5 V 20 45 70 kΩ

VI = 0 V; VCCI0 = 1.8 V 30 65 100 kΩ

VI = 0 V; VCCI0 = 1.5 V 50 100 150 kΩ

Recommended value of I/O pin 
external pull-down resistor 
before and during configuration

1 2 kΩ

Table 4–4. LVTTL Specifications  (Part 1 of 2)

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

Table 4–2. Cyclone Device Recommended Operating Conditions  (Part 2 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit
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Operating Conditions

VOH High-level output voltage IOH = –4 to –24 mA (11) 2.4 V

VOL Low-level output voltage IOL = 4 to 24 mA (11) 0.45 V

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 2.375 2.625 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

VOH High-level output voltage IOH = –0.1 mA 2.1 V

IOH = –1 mA 2.0 V

IOH = –2 to –16 mA (11) 1.7 V

VOL Low-level output voltage IOL = 0.1 mA 0.2 V

IOH = 1 mA 0.4 V

IOH = 2 to 16 mA (11) 0.7 V

Table 4–4. LVTTL Specifications  (Part 2 of 2)

Symbol Parameter Conditions Minimum Maximum Unit
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Table 4–7. 1.8-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 1.65 1.95 V

VI H High-level input voltage 0.65 ×  VCCIO 2.25 (12) V

VIL Low-level input voltage –0.3 0.35 ×  VCCIO V

VOH High-level output voltage IOH = –2 to –8 mA (11) VCCIO – 0.45 V

VOL Low-level output voltage IOL = 2 to 8 mA (11) 0.45 V

Table 4–8. 1.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 1.4 1.6 V

VI H High-level input voltage 0.65 ×  VCCIO VCCIO + 0.3
(12)

V

VIL Low-level input voltage –0.3 0.35 ×  VCCIO V

VOH High-level output voltage IOH = –2 mA (11) 0.75 ×  VCCIO V

VOL Low-level output voltage IOL = 2 mA (11) 0.25 ×  VCCIO V

Table 4–9. 2.5-V LVDS I/O Specifications Note (13)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO I/O supply voltage 2.375 2.5 2.625 V

VOD Differential output voltage RL = 100 Ω 250 550 mV

Δ VOD Change in VOD between 
high and low

RL = 100 Ω 50 mV

VOS Output offset voltage RL = 100 Ω 1.125 1.25 1.375 V

Δ VOS Change in VOS between 
high and low

RL = 100 Ω 50 mV

VTH Differential input threshold VCM = 1.2 V –100 100 mV

VIN Receiver input voltage 
range

0.0 2.4 V

RL Receiver differential input 
resistor

90 100 110 Ω
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Table 4–10. 3.3-V PCI Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.3 3.6 V

VIH High-level input voltage 0.5 ×  
VCCIO

VCCIO + 
0.5

V

VIL Low-level input voltage –0.5 0.3 ×  
VCCIO

V

VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

V

VOL Low-level output voltage IOUT = 1,500 μA 0.1 ×  
VCCIO

V

Table 4–11. SSTL-2 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 2.375 2.5 2.625 V

VTT Termination voltage VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH High-level input voltage VR E F + 0.18 3.0 V

VIL Low-level input voltage –0.3 VR E F – 0.18 V

VOH High-level output voltage IOH = –8.1 mA 
(11)

VTT + 0.57 V

VOL Low-level output voltage IOL = 8.1 mA (11) VT T – 0.57 V

Table 4–12. SSTL-2 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 2.3 2.5 2.7 V

VTT Termination voltage VR E F – 0.04 VR E F VR E F + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH High-level input voltage VR E F + 0.18 VCCIO + 0.3 V

VIL Low-level input voltage –0.3 VR E F – 0.18 V

VOH High-level output voltage IOH = –16.4 mA 
(11)

VTT + 0.76 V

VOL Low-level output voltage IOL = 16.4 mA 
(11)

VT T – 0.76 V
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Table 4–13. SSTL-3 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH High-level input voltage VR E F + 0.2 VCCIO + 0.3 V

VIL Low-level input voltage –0.3 VR E F – 0.2 V

VOH High-level output voltage IOH = –8 mA (11) VTT + 0.6 V

VOL Low-level output voltage IOL = 8 mA (11) VT T – 0.6 V

Table 4–14. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VR E F – 0.05 VR E F VR E F + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH High-level input voltage VR E F + 0.2 VCCIO + 0.3 V

VIL Low-level input voltage –0.3 VR E F – 0.2 V

VOH High-level output voltage IOH = –16 mA 
(11)

VT T + 0.8 V

VOL Low-level output voltage IOL = 16 mA (11) VTT – 0.8 V

Table 4–15. Bus Hold Parameters

Parameter Conditions

VC C I O  Level

Unit1.5 V 1.8 V 2.5 V 3.3 V

Min Max Min Max Min Max Min Max

Low sustaining 
current

VIN > VIL 
(maximum)

30 50 70 μA

High sustaining 
current

VIN < VIH 
(minimum)

–30 –50 –70 μA

Low overdrive 
current

0 V < VIN < 
VCCIO

200 300 500 μA

High overdrive 
current

0 V < VIN < 
VCCIO

–200 –300 –500 μA
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Table 4–16. Cyclone Device Capacitance Note (14)

Symbol Parameter Typical Unit

CIO Input capacitance for user I/O pin 4.0 pF

CLVDS Input capacitance for dual-purpose LVDS/user I/O pin 4.7 pF

CVREF Input capacitance for dual-purpose VRE F/user I/O pin. 12.0 pF

CDPCLK Input capacitance for dual-purpose DPCLK/user I/O pin. 4.4 pF

CCLK Input capacitance for CLK pin. 4.7 pF

Notes to Tables 4–1 through 4–16:
(1) Refer to the Operating Requirements for Altera Devices Data Sheet.
(2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device 

operation at the absolute maximum ratings for extended periods of time may have adverse affects on the device.
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 4.6 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(6) Typical values are for TA = 25°  C, VCCINT = 1.5 V, and VCCIO = 1.5 V, 1.8 V, 2.5 V, and 3.3 V.
(7) VI = ground, no load, no toggling inputs.
(8) This value is specified for normal device operation. The value may vary during power-up. This applies for all 

VCCIO settings (3.3, 2.5, 1.8, and 1.5 V).
(9) RCONF is the measured value of internal pull-up resistance when the I/O pin is tied directly to GND. RCONF value 

will be lower if an external source drives the pin higher than VC C I O .
(10) Pin pull-up resistance values will lower if an external source drives the pin higher than VCCIO.
(11) Drive strength is programmable according to values in Chapter 2, Cyclone Architecture, Table 2–11.
(12) Overdrive is possible when a 1.5 V or 1.8 V and a 2.5 V or 3.3 V input signal feeds an input pin. Turn on “Allow 

voltage overdrive” for LVTTL/LVCMOS input pins in the Assignments > Device > Device and Pin Options > Pin 
Placement tab when a device has this I/O combination. However, higher leakage current is expected.

(13) The Cyclone LVDS interface requires a resistor network outside of the transmitter channels.
(14) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement 

accuracy is within ±0.5 pF.
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Power 
Consumption

Designers can use the Altera web Early Power Estimator to estimate the 
device power.

Cyclone devices require a certain amount of power-up current to 
successfully power up because of the nature of the leading-edge process 
on which they are fabricated. Table 4–17 shows the maximum power-up 
current required to power up a Cyclone device. 

Designers should select power supplies and regulators that can supply 
this amount of current when designing with Cyclone devices. This 
specification is for commercial operating conditions. Measurements were 
performed with an isolated Cyclone device on the board. Decoupling 
capacitors were not used in this measurement. To factor in the current for 
decoupling capacitors, sum up the current for each capacitor using the 
following equation:

I = C (dV/dt)

The exact amount of current that is consumed varies according to the 
process, temperature, and power ramp rate. If the power supply or 
regulator can supply more current than required, the Cyclone device may 
consume more current than the maximum current specified in Table 4–17. 
However, the device does not require any more current to successfully 
power up than what is listed in Table 4–17.

The duration of the ICCINT power-up requirement depends on the VCCINT 
voltage supply rise time. The power-up current consumption drops when 
the VCCINT supply reaches approximately 0.75 V. For example, if the 
VCCINT rise time has a linear rise of 15 ms, the current consumption spike 
drops by 7.5 ms.

Table 4–17. Cyclone Maximum Power-Up Current (ICCINT) Requirements (In-Rush Current)

Device Commercial Specification Industrial Specification Unit

EP1C3 150 180 mA

EP1C4 150 180 mA

EP1C6 175 210 mA

EP1C12 300 360 mA

EP1C20 500 600 mA

Notes to Table 4–17:
(1) The Cyclone devices (except for the EP1C20 device) meet the power up specification for Mini PCI.
(2) The lot codes 9G0082 to 9G2999, or 9G3109 and later comply to the specifications in Table 4–17 and meet the Mini 

PCI specification. Lot codes appear at the top of the device.
(3) The lot codes 9H0004 to 9H29999, or 9H3014 and later comply to the specifications in this table and meet the Mini 

PCI specification. Lot codes appear at the top of the device.
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Typically, the user-mode current during device operation is lower than 
the power-up current in Table 4–17. Altera recommends using the 
Cyclone Power Calculator, available on the Altera web site, to estimate 
the user-mode ICCINT consumption and then select power supplies or 
regulators based on the higher value.

Timing Model The DirectDrive technology and MultiTrack interconnect ensure 
predictable performance, accurate simulation, and accurate timing 
analysis across all Cyclone device densities and speed grades. This 
section describes and specifies the performance, internal, external, and 
PLL timing specifications. 

All specifications are representative of worst-case supply voltage and 
junction temperature conditions.

Preliminary & Final Timing

Timing models can have either preliminary or final status. The 
Quartus® II software issues an informational message during the design 
compilation if the timing models are preliminary. Table 4–18 shows the 
status of the Cyclone device timing models.

Preliminary status means the timing model is subject to change. Initially, 
timing numbers are created using simulation results, process data, and 
other known parameters. These tests are used to make the preliminary 
numbers as close to the actual timing parameters as possible. 

Final timing numbers are based on actual device operation and testing. 
These numbers reflect the actual performance of the device under 
worst-case voltage and junction temperature conditions.

Table 4–18. Cyclone Device Timing Model Status

Device Preliminary Final

EP1C3 v

EP1C4 v

EP1C6 v

EP1C12 v

EP1C20 v
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Performance

The maximum internal logic array clock tree frequency is limited to the 
specifications shown in Table 4–19.

Table 4–20 shows the Cyclone device performance for some common 
designs. All performance values were obtained with the Quartus II 
software compilation of library of parameterized modules (LPM) 
functions or megafunctions. These performance values are based on 
EP1C6 devices in 144-pin TQFP packages.

Table 4–19. Clock Tree Maximum Performance Specification

Parameter Definition
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Units
Min Typ Max Min Typ Max Min Typ Max

Clock tree 
fM A X

Maximum frequency 
that the clock tree 
can support for 
clocking registered 
logic

405 320 275 MHz

Table 4–20. Cyclone Device Performance

Resource 
Used

Design Size & 
Function Mode

Resources Used Performance

LEs
M4K 

Memory 
Bits

M4K 
Memory 
Blocks

-6 Speed 
Grade 
(MHz)

-7 Speed 
Grade 
(MHz)

-8 Speed 
Grade 
(MHz)

LE 16-to-1 
multiplexer

- 21 -  - 405.00 320.00 275.00

32-to-1 
multiplexer

- 44 -  - 317.36 284.98 260.15

16-bit counter - 16 -  - 405.00 320.00 275.00

64-bit counter (1) - 66 -  - 208.99 181.98 160.75
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Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–21 through 4–24 describe the 
Cyclone device internal timing microparameters for LEs, IOEs, M4K 
memory structures, and MultiTrack interconnects.

M4K 
memory 
block

RAM 128 × 36 bit Single port - 4,608 1 256.00 222.67 197.01

RAM 128 × 36 bit Simple 
dual-port 
mode

- 4,608 1 255.95 222.67 196.97

RAM 256 × 18 bit True dual-
port mode

- 4,608 1 255.95 222.67 196.97

FIFO 128 × 36 bit - 40 4,608 1 256.02 222.67 197.01

Shift register 
9 × 4 × 128

Shift 
register

11 4,536 1 255.95 222.67 196.97

Note to Table 4–20:
(1) The performance numbers for this function are from an EP1C6 device in a 240-pin PQFP package.

Table 4–20. Cyclone Device Performance

Resource 
Used

Design Size & 
Function Mode

Resources Used Performance

LEs
M4K 

Memory 
Bits

M4K 
Memory 
Blocks

-6 Speed 
Grade 
(MHz)

-7 Speed 
Grade 
(MHz)

-8 Speed 
Grade 
(MHz)

Table 4–21. LE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU LE register setup time before clock

tH LE register hold time after clock

tCO LE register clock-to-output delay

tLUT LE combinatorial LUT delay for data-in to data-out

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time
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Table 4–22. IOE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU IOE input and output register setup time before clock

tH IOE input and output register hold time after clock

tCO IOE input and output register clock-to-output delay

tPIN2COMBOUT_R Row input pin to IOE combinatorial output

tPIN2COMBOUT_C Column input pin to IOE combinatorial output

tCOMBIN2PIN_R Row IOE data input to combinatorial output pin

tCOMBIN2PIN_C Column IOE data input to combinatorial output pin

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Minimum clock high or low time

Table 4–23. M4K Block Internal Timing Microparameter Descriptions

Symbol Parameter

tM4KRC Synchronous read cycle time

tM4KWC Synchronous write cycle time

tM4KWERESU Write or read enable setup time before clock

tM4KWEREH Write or read enable hold time after clock

tM4KBESU Byte enable setup time before clock

tM4KBEH Byte enable hold time after clock

tM4KDATAASU A port data setup time before clock

tM4KDATAAH A port data hold time after clock

tM4KADDRASU A port address setup time before clock

tM4KADDRAH A port address hold time after clock

tM4KDATABSU B port data setup time before clock

tM4KDATABH B port data hold time after clock

tM4KADDRBSU B port address setup time before clock

tM4KADDRBH B port address hold time after clock

tM4KDATACO1 Clock-to-output delay when using output registers

tM4KDATACO2 Clock-to-output delay without output registers

tM4KCLKHL Minimum clock high or low time

tM4KCLR Minimum clear pulse width
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Figure 4–1 shows the memory waveforms for the M4K timing parameters 
shown in Table 4–23.

Figure 4–1. Dual-Port RAM Timing Microparameter Waveform

Table 4–24. Routing Delay Internal Timing Microparameter Descriptions

Symbol Parameter

tR4 Delay for an R4 line with average loading; covers a distance 
of four LAB columns

tC4 Delay for an C4 line with average loading; covers a distance 
of four LAB rows

tLOCAL Local interconnect delay

wrclock

wren

wraddress

data-in

reg_data-out

an-1 an a0 a1 a2 a3 a4 a5

din-1 din din4 din5

rdclock

a6

din6

unreg_data-out

rden

rdaddress bn b0 b1 b2 b3

doutn-2 doutn-1 doutn

doutn-1 doutn dout0

tWERESU tWEREH

tDATACO1

tDATACO2

tDATASU

tDATAH

tWEREH tWERESU

tWADDRSU tWADDRH

dout0

tRC
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Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–25 through 4–28 show the 
internal timing microparameters for LEs, IOEs, TriMatrix memory 
structures, DSP blocks, and MultiTrack interconnects. 

Table 4–25. LE Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tSU 29 33 37 ps 

tH 12 13 15 ps 

tCO 173 198 224 ps 

tLUT 454 522 590 ps 

tCLR 129 148 167 ps 

tPRE 129 148 167 ps 

tCLKHL 1,234 1,562 1,818 ps 

Table 4–26. IOE Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tSU 348 400 452 ps

tH 0 0 0 ps

tCO 511 587 664 ps

tPIN2COMBOUT_R 1,130 1,299 1,469 ps

tPIN2COMBOUT_C 1,135 1,305 1,475 ps

tCOMBIN2PIN_R 2,627 3,021 3,415 ps

tCOMBIN2PIN_C 2,615 3,007 3,399 ps

tCLR 280 322 364 ps

tPRE 280 322 364 ps

tCLKHL 1,234 1,562 1,818 ps
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External Timing Parameters

External timing parameters are specified by device density and speed 
grade. Figure 4–2 shows the timing model for bidirectional IOE pin 
timing. All registers are within the IOE.

Table 4–27. M4K Block Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tM4KRC 4,379 5,035 5,691 ps

tM4KWC 2,910 3,346 3,783 ps

tM4KWERESU 72 82 93 ps

tM4KWEREH 43 49 55 ps

tM4KBESU 72 82 93 ps

tM4KBEH 43 49 55 ps

tM4KDATAASU 72 82 93 ps

tM4KDATAAH 43 49 55 ps

tM4KADDRASU 72 82 93 ps

tM4KADDRAH 43 49 55 ps

tM4KDATABSU 72 82 93 ps

tM4KDATABH 43 49 55 ps

tM4KADDRBSU 72 82 93 ps

tM4KADDRBH 43 49 55 ps

tM4KDATACO1 621 714 807 ps

tM4KDATACO2 4,351 5,003 5,656 ps

tM4KCLKHL 1,234 1,562 1,818 ps

tM4KCLR 286 328 371 ps

Table 4–28. Routing Delay Internal Timing Microparameters

Symbol
-6 -7 -8

Unit
Min Max Min Max Min Max

tR4 261 300 339 ps

tC4 338 388 439 ps

tLOCAL 244 281 318 ps
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Figure 4–2. External Timing in Cyclone Devices

All external I/O timing parameters shown are for 3.3-V LVTTL I/O 
standard with the maximum current strength and fast slew rate. For 
external I/O timing using standards other than LVTTL or for different 
current strengths, use the I/O standard input and output delay adders in 
Tables 4–40 through 4–44.

Table 4–29 shows the external I/O timing parameters when using global 
clock networks.

PRN

CLRN

D Q

PRN

CLRN

D Q

PRN

CLRN

D Q

Dedicated
Clock

Bidirectional
Pin

Output Register

Input Register

OE Register

tXZ
tZX
tINSU
tINH
tOUTCO

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 1 of 2)

Symbol Parameter Conditions

tI N S U Setup time for input or bidirectional pin using IOE input 
register with global clock fed by CLK pin

tI N H Hold time for input or bidirectional pin using IOE input 
register with global clock fed by CLK pin

tO U T C O Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock fed by CLK pin

CLOAD = 10 pF

tI N S U P L L Setup time for input or bidirectional pin using IOE input 
register with global clock fed by Enhanced PLL with default 
phase setting

tI N H P L L Hold time for input or bidirectional pin using IOE input 
register with global clock fed by enhanced PLL with default 
phase setting
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Tables 4–30 through 4–31 show the external timing parameters on column 
and row pins for EP1C3 devices.

tO U T C O P L L Clock-to-output delay output or bidirectional pin using IOE 
output register with global clock enhanced PLL with default 
phase setting

CLOAD = 10 pF

Notes to Table 4–29:
(1) These timing parameters are sample-tested only.
(2) These timing parameters are for IOE pins using a 3.3-V LVTTL, 24-mA setting. Designers should use the Quartus II 

software to verify the external timing for any pin.

Table 4–29. Cyclone Global Clock External I/O Timing Parameters Notes (1), (2)  (Part 2 of 2)

Symbol Parameter Conditions

Table 4–30. EP1C3 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.085 3.547 4.009 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 4.073 2.000 4.682 2.000 5.295 ns

tI N S UP L L 1.795 2.063 2.332 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 2.306 0.500 2.651 0.500 2.998 ns

Table 4–31. EP1C3 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 3.157 3.630 4.103 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.984 2.000 4.580 2.000 5.180 ns

tI N S UP L L 1.867 2.146 2.426 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 2.217 0.500 2.549 0.500 2.883 ns
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Tables 4–32 through 4–33 show the external timing parameters on column 
and row pins for EP1C4 devices.

Table 4–32. EP1C4 Column Pin Global Clock External I/O Timing 
Parameters Note (1)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.471 2.841 3.210 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.937 2.000 4.526 2.000 5.119 ns

tI N S UP L L 1.471 1.690 1.910 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 2.080 0.500 2.392 0.500 2.705 ns

Table 4–33. EP1C4 Row Pin Global Clock External I/O Timing 
Parameters Note (1)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.600 2.990 3.379 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.991 2.000 4.388 2.000 5.189 ns

tI N S UP L L 1.300 1.494 1.689 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 2.234 0.500 2.569 0.500 2.905 ns

Note to Tables 4–32 and 4–33:
(1) Contact Altera Applications for EP1C4 device timing parameters.
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Tables 4–34 through 4–35 show the external timing parameters on column 
and row pins for EP1C6 devices.

Tables 4–36 through 4–37 show the external timing parameters on column 
and row pins for EP1C12 devices.

Table 4–34. EP1C6 Column Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.691 3.094 3.496 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.917 2.000 4.503 2.000 5.093 ns

tI N S UP L L 1.513 1.739 1.964 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 2.038 0.500 2.343 0.500 2.651 ns

Table 4–35. EP1C6 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.774 3.190 3.605 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.817 2.000 4.388 2.000 4.963 ns

tI N S UP L L 1.596 1.835 2.073 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 1.938 0.500 2.228 0.500 2.521 ns

Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing 
Parameters  (Part 1 of 2)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.510 2.885 3.259 ns

tI N H 0.000 0.000 0.000 ns

tOUT CO 2.000 3.798 2.000 4.367 2.000 4.940 ns

tI N S UP L L 1.588 1.824 2.061 ns
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Tables 4–38 through 4–39 show the external timing parameters on column 
and row pins for EP1C20 devices.

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 1.663 0.500 1.913 0.500 2.164 ns

Table 4–37. EP1C12 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.620 3.012 3.404 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.671 2.000 4.221 2.000 4.774 ns

tI N S UP L L 1.698 1.951 2.206 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 1.536 0.500 1.767 0.500 1.998 ns

Table 4–38. EP1C20 Column Pin Global Clock External I/O Timing 
Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.417 2.779 3.140 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.724 2.000 4.282 2.000 4.843 ns

tI N S UP L L 1.417 1.629 1.840 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 1.667 0.500 1.917 0.500 2.169 ns

Table 4–36. EP1C12 Column Pin Global Clock External I/O Timing 
Parameters  (Part 2 of 2)

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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External I/O Delay Parameters

External I/O delay timing parameters for I/O standard input and output 
adders and programmable input and output delays are specified by 
speed grade independent of device density. 

Tables 4–40 through 4–45 show the adder delays associated with column 
and row I/O pins for all packages. If an I/O standard is selected other 
than LVTTL 4 mA with a fast slew rate, add the selected delay to the 
external tCO and tSU I/O parameters shown in Tables 4–25 through 
4–28.

Table 4–39. EP1C20 Row Pin Global Clock External I/O Timing Parameters

Symbol
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tI N S U 2.417 2.779 3.140 ns

tI N H 0.000 0.000 0.000 ns

tO U T C O 2.000 3.724 2.000 4.282 2.000 4.843 ns

tX Z 3.645 4.191 4.740 ns

tZ X 3.645 4.191 4.740 ns

tI N S UP L L 1.417 1.629 1.840 ns

tI N H P L L 0.000 0.000 0.000 ns

tO U T C O P L L 0.500 1.667 0.500 1.917 0.500 2.169 ns

tX Z P L L 1.588 1.826 2.066 ns

tZ X P L L 1.588 1.826 2.066 ns

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 0 0 0 ps

3.3-V LVTTL 0 0 0 ps

2.5-V LVTTL 27 31 35 ps

1.8-V LVTTL 182 209 236 ps

1.5-V LVTTL 278 319 361 ps

SSTL-3 class I −250 −288 −325 ps

SSTL-3 class II −250 −288 −325 ps

SSTL-2 class I −278 −320 −362 ps
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SSTL-2 class II −278 −320 −362 ps

LVDS −261 −301 −340 ps

Table 4–41. Cyclone I/O Standard Row Pin Input Delay Adders

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 0 0 0 ps

3.3-V LVTTL 0 0 0 ps

2.5-V LVTTL 27 31 35 ps

1.8-V LVTTL 182 209 236 ps

1.5-V LVTTL 278 319 361 ps

3.3-V PCI (1) 0 0 0 ps

SSTL-3 class I −250 −288 −325 ps

SSTL-3 class II −250 −288 −325 ps

SSTL-2 class I −278 −320 −362 ps

SSTL-2 class II −278 −320 −362 ps

LVDS −261 −301 −340 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA 0 0 0 ps

4 mA −489 −563 −636 ps

8 mA −855 −984 −1,112 ps

12 mA −993 −1,142 −1,291 ps

3.3-V LVTTL 4 mA 0 0 0 ps

8 mA −347 −400 −452 ps

12 mA −858 −987 −1,116 ps

16 mA −819 −942 −1,065 ps

24 mA −993 −1,142 −1,291 ps

Table 4–40. Cyclone I/O Standard Column Pin Input Delay Adders  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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2.5-V LVTTL 2 mA 329 378 427 ps

8 mA −661 −761 −860 ps

12 mA −655 −754 −852 ps

16 mA −795 −915 −1034 ps

1.8-V LVTTL 2 mA 4 4 5 ps

8 mA −208 −240 −271 ps

12 mA −208 −240 −271 ps

1.5-V LVTTL 2 mA 2,288 2,631 2,974 ps

4 mA 608 699 790 ps

8 mA 292 335 379 ps

SSTL-3 class I −410 −472 −533 ps

SSTL-3 class II −811 −933 −1,055 ps

SSTL-2 class I −485 −558 −631 ps

SSTL-2 class II −758 −872 −986 ps

LVDS −998 −1, 148 −1,298 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 1 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA 0 0 0 ps

4 mA −489 −563 −636 ps

8 mA −855 −984 −1,112 ps

12 mA −993 −1,142 −1,291 ps

3.3-V LVTTL 4 mA 0 0 0 ps

8 mA −347 −400 −452 ps

12 mA -858 −987 −1,116 ps

16 mA −819 −942 −1,065 ps

24 mA −993 −1,142 −1,291 ps

2.5-V LVTTL 2 mA 329 378 427 ps

8 mA −661 −761 −860 ps

12 mA −655 −754 −852 ps

16 mA −795 −915 −1,034 ps

Table 4–42. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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1.8-V LVTTL 2 mA 1,290 1,483 1,677 ps

8 mA 4 4 5 ps

12 mA −208 −240 −271 ps

1.5-V LVTTL 2 mA 2,288 2,631 2,974 ps

4 mA 608 699 790 ps

8 mA 292 335 379 ps

3.3-V PCI (1) −877 −1,009 −1,141 ps

SSTL-3 class I −410 −472 −533 ps

SSTL-3 class II −811 −933 −1,055 ps

SSTL-2 class I −485 −558 −631 ps

SSTL-2 class II −758 −872 −986 ps

LVDS −998 −1,148 −1,298 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA 1,800 2,070 2,340 ps

4 mA 1,311 1,507 1,704 ps

8 mA 945 1,086 1,228 ps

12 mA 807 928 1,049 ps

3.3-V LVTTL 4 mA 1,831 2,105 2,380 ps

8 mA 1,484 1,705 1,928 ps

12 mA 973 1,118 1,264 ps

16 mA 1,012 1,163 1,315 ps

24 mA 838 963 1,089 ps

2.5-V LVTTL 2 mA 2,747 3,158 3,570 ps

8 mA 1,757 2,019 2,283 ps

12 mA 1,763 2,026 2,291 ps

16 mA 1,623 1,865 2,109 ps

1.8-V LVTTL 2 mA 5,506 6,331 7,157 ps

8 mA 4,220 4,852 5,485 ps

12 mA 4,008 4,608 5,209 ps

Table 4–43. Cyclone I/O Standard Output Delay Adders for Fast Slew Rate on Row Pins  (Part 2 of 2)

Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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1.5-V LVTTL 2 mA 6,789 7,807 8,825 ps

4 mA 5,109 5,875 6,641 ps

8 mA 4,793 5,511 6,230 ps

SSTL-3 class I 1,390 1,598 1,807 ps

SSTL-3 class II 989 1,137 1,285 ps

SSTL-2 class I 1,965 2,259 2,554 ps

SSTL-2 class II 1,692 1,945 2,199 ps

LVDS 802 922 1,042 ps

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 1 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

LVCMOS 2 mA 1,800 2,070 2,340 ps

4 mA 1,311 1,507 1,704 ps

8 mA 945 1,086 1,228 ps

12 mA 807 928 1,049 ps

3.3-V LVTTL 4 mA 1,831 2,105 2,380 ps

8 mA 1,484 1,705 1,928 ps

12 mA 973 1,118 1,264 ps

16 mA 1,012 1,163 1,315 ps

24 mA 838 963 1,089 ps

2.5-V LVTTL 2 mA 2,747 3,158 3,570 ps

8 mA 1,757 2,019 2,283 ps

12 mA 1,763 2,026 2,291 ps

16 mA 1,623 1,865 2,109 ps

1.8-V LVTTL 2 mA 5,506 6,331 7,157 ps

8 mA 4,220 4,852 5,485 ps

12 mA 4,008 4,608 5,209 ps

1.5-V LVTTL 2 mA 6,789 7,807 8,825 ps

4 mA 5,109 5,875 6,641 ps

8 mA 4,793 5,511 6,230 ps

3.3-V PCI 923 1,061 1,199 ps

Table 4–44. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max
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Tables 4–46 through 4–47 show the adder delays for the IOE 
programmable delays. These delays are controlled with the Quartus II 
software options listed in the Parameter column.

SSTL-3 class I 1,390 1,598 1,807 ps

SSTL-3 class II 989 1,137 1,285 ps

SSTL-2 class I 1,965 2,259 2,554 ps

SSTL-2 class II 1,692 1,945 2,199 ps

LVDS 802 922 1,042 ps

Note to Tables 4–40 through 4–45:
(1) EP1C3 devices do not support the PCI I/O standard.

Table 4–45. Cyclone I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins  (Part 2 of 2)

I/O Standard
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Table 4–46. Cyclone IOE Programmable Delays on Column Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off 155 178 201 ps

Small 2,122 2,543 2,875 ps

Medium 2,639 3,034 3,430 ps

Large 3,057 3,515 3,974 ps

On 155 178 201 ps

Decrease input delay to 
input register

Off 0 0 0 ps

On 3,057 3,515 3,974 ps

Increase delay to output 
pin

Off 0 0 0 ps

On 552 634 717 ps
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Maximum Input & Output Clock Rates

Tables 4–48 and 4–49 show the maximum input clock rate for column and 
row pins in Cyclone devices.  

Table 4–47. Cyclone IOE Programmable Delays on Row Pins

Parameter Setting
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

Decrease input delay to 
internal cells

Off 154 177 200 ps

Small 2,212 2,543 2,875 ps

Medium 2,639 3,034 3,430 ps

Large 3,057 3,515 3,974 ps

On 154 177 200 ps

Decrease input delay to input 
register

Off 0 0 0 ps

On 3,057 3,515 3,974 ps

Increase delay to output pin Off 0 0 0 ps

On 556 639 722 ps

Note to Table 4–47:
(1) EPC1C3 devices do not support the PCI I/O standard

Table 4–48. Cyclone Maximum Input Clock Rate for Column Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 464 428 387 MHz

2.5 V 392 302 207 MHz

1.8 V 387 311 252 MHz

1.5 V 387 320 243 MHz

LVCMOS 405 374 333 MHz

SSTL-3 class I 405 356 293 MHz

SSTL-3 class II 414 365 302 MHz

SSTL-2 class I 464 428 396 MHz

SSTL-2 class II 473 432 396 MHz

LVDS 567 549 531 MHz
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Tables 4–50 and 4–51 show the maximum output clock rate for column 
and row pins in Cyclone devices.

Table 4–49. Cyclone Maximum Input Clock Rate for Row Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 464 428 387 MHz

2.5 V 392 302 207 MHz

1.8 V 387 311 252 MHz

1.5 V 387 320 243 MHz

LVCMOS 405 374 333 MHz

SSTL-3 class I 405 356 293 MHz

SSTL-3 class II 414 365 302 MHz

SSTL-2 class I 464 428 396 MHz

SSTL-2 class II 473 432 396 MHz

3.3-V PCI (1) 464 428 387 MHz

LVDS 567 549 531 MHz

Note to Tables 4–48 through 4–49:
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only 

available on row I/O pins.

Table 4–50. Cyclone Maximum Output Clock Rate for Column Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 304 304 304 MHz

2.5 V 220 220 220 MHz

1.8 V 213 213 213 MHz

1.5 V 166 166 166 MHz

LVCMOS 304 304 304 MHz

SSTL-3 class I 100 100 100 MHz

SSTL-3 class II 100 100 100 MHz

SSTL-2 class I 134 134 134 MHz

SSTL-2 class II 134 134 134 MHz

LVDS 320 320 275 MHz

Note to Table 4–50:
(1) EP1C3 devices do not support the PCI I/O standard. 
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PLL Timing

Table 4–52 describes the Cyclone FPGA PLL specifications.

Table 4–51. Cyclone Maximum Output Clock Rate for Row Pins

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 296 285 273 MHz

2.5 V 381 366 349 MHz

1.8 V 286 277 267 MHz

1.5 V 219 208 195 MHz

LVCMOS 367 356 343 MHz

SSTL-3 class I 169 166 162 MHz

SSTL-3 class II 160 151 146 MHz

SSTL-2 class I 160 151 142 MHz

SSTL-2 class II 131 123 115 MHz

3.3-V PCI (1) 66 66 66 MHz

LVDS 320 303 275 MHz

Note to Tables 4–50 through 4–51:
(1) EP1C3 devices do not support the PCI I/O standard. These parameters are only 

available on row I/O pins.

Table 4–52. Cyclone PLL Specifications  (Part 1 of 2)

Symbol Parameter Min Max Unit

fIN Input frequency (-6 speed 
grade)

15.625 464 MHz

Input frequency (-7 speed 
grade)

15.625 428 MHz

Input frequency (-8 speed 
grade)

15.625 387 MHz

fIN DUTY Input clock duty cycle 40.00 60 %

tIN JITTER Input clock period jitter ± 200 ps

fOUT_EXT (external PLL 
clock output)

PLL output frequency 
(-6 speed grade)

15.625 320 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz
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fOUT (to global clock) PLL output frequency 
(-6 speed grade)

15.625 405 MHz

PLL output frequency 
(-7 speed grade)

15.625 320 MHz

PLL output frequency 
(-8 speed grade)

15.625 275 MHz

tOUT DUTY Duty cycle for external clock 
output (when set to 50%)

45.00 55 %

tJITTER (1) Period jitter for external clock 
output

±300 (2) ps

tLOCK (3) Time required to lock from end 
of device configuration 

10.00 100 μs

fVCO PLL internal VCO operating 
range

500.00 1,000 MHz

- Minimum areset time 10 ns

N, G0, G1, E Counter values 1 32 integer

Notes to Table 4–52:
(1) The tJITTER specification for the PLL[2..1]_OUT pins are dependent on the I/O pins in its VCCIO bank, how many 

of them are switching outputs, how much they toggle, and whether or not they use programmable current strength 
or slow slew rate.

(2) fOUT ≥ 100 MHz. When the PLL external clock output frequency (fOUT) is smaller than 100 MHz, the jitter 
specification is 60 mUI.

(3) fIN/N must be greater than 200 MHz to ensure correct lock detect circuit operation below –20 C. Otherwise, the PLL 
operates with the specified parameters under the specified conditions.

Table 4–52. Cyclone PLL Specifications  (Part 2 of 2)

Symbol Parameter Min Max Unit
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Document 
Revision History

Table 4–53 shows the revision history for this document.

Table 4–53. Document Revision History

Date & 
Document 

Version
Changes Made Summary of Changes

January 2007 
v1.6

● Added document revision history.
● Added new row for VCCA details in Table 4–1.
● Updated RCONF information in Table 4–3.
● Added new Note (12) on voltage overdrive information to 

Table 4–7 and Table 4–8.
● Updated Note (9) on RCONF information to Table 4–3.
● Updated information in “External I/O Delay Parameters” 

section.
● Updated speed grade information in Table 4–46 and 

Table 4–47.

● Updated LVDS information in Table 4–51.

August 2005 
v1.5

Minor updates.

February 2005 
v1.4

● Updated information on Undershoot voltage. Updated Table 
4-2.

● Updated Table 4-3.
● Updated the undershoot voltage from 0.5 V to 2.0 V in Note 3 

of Table 4-16.
● Updated Table 4-17.

January 2004
v.1.3

● Added extended-temperature grade device information. 
Updated Table 4-2.

● Updated IC C 0 information in Table 4-3.

October 2003
v.1.2

● Added clock tree information in Table 4-19.
● Finalized timing information for EP1C3 and EP1C12 devices. 

Updated timing information in Tables 4-25 through 4-26 and 
Tables 4-30 through 4-51.

● Updated PLL specifications in Table 4-52.

July 2003 v1.1 Updated timing information. Timing finalized for EP1C6 and 
EP1C20 devices. Updated performance information. Added PLL 
Timing section.

May 2003 v1.0 Added document to Cyclone Device Handbook.
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5. Reference & Ordering
Information

Software Cyclone® devices are supported by the Altera® Quartus® II design 
software, which provides a comprehensive environment for system-on-a-
programmable-chip (SOPC) design. The Quartus II software includes 
HDL and schematic design entry, compilation and logic synthesis, full 
simulation and advanced timing analysis, SignalTap® II logic analysis, 
and device configuration. Refer to the Design Software Selector Guide for 
more details on the Quartus II software features.

The Quartus II software supports the Windows 2000/NT/98, Sun Solaris, 
Linux Red Hat v7.1 and HP-UX operating systems. It also supports 
seamless integration with industry-leading EDA tools through the 
NativeLink® interface.

Device Pin-Outs Device pin-outs for Cyclone devices are available on the Altera web site 
(www.altera.com) and in the Cyclone FPGA Device Handbook.

Ordering 
Information

Figure 5–1 describes the ordering codes for Cyclone devices. For more 
information on a specific package, refer to Chapter 15, Package 
Information for Cyclone Devices.

Figure 5–1. Cyclone Device Packaging Ordering Information

Device Type

Package Type

6, 7, or 8 , with 6 being the fastest

Number of pins for a particular package

ES:

T:
Q:
F:

Thin quad flat pack (TQFP)
Plastic quad flat pack (PQFP)
FineLine BGA

EP1C: Cyclone

3
4
6
12
20

C:
I:

Commercial temperature (tJ = 0˚ C to 85˚ C)
Industrial temperature (tJ = -40˚ C to 100˚ C)

Optional SuffixFamily Signature

Operating Temperature

Speed Grade

Pin Count

Engineering sample

7EP1C 20 C400F ES

Indicates specific device options or 
shipment method.

C51005-1.3

http://www.altera.com
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Document 
Revision History

Table 5–1 shows the revision history for this document.

Table 5–1. Document Revision History

Date & 
Document 

Version
Changes Made Summary of Changes

January 2007 
v1.3

Added document revision history.

August 2005 
v1.2

Minor updates.

February 2005 
v1.1

Updated Figure 5-1.

May 2003 v1.0 Added document to Cyclone Device Handbook.


